• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge-domain sampling of high-frequency signals with embedded filtering

Karvonen, S. (Sami) 18 January 2006 (has links)
Abstract Subsampling can be used in a radio receiver to perform signal downconversion and sample-and-hold operations in order to relieve the operation frequency and bandwidth requirements of the subsequent discrete-time circuitry. However, due to the inherent aliasing behaviour of wideband noise and interference in subsampling, and the difficulty of implementing appropriate bandpass anti-aliasing filtering at high frequencies, straightforward use of a low subsampling rate can result in significant degradation of the receiver dynamic range. The aim of this thesis is to investigate and implement methods for integrating filtering into high-frequency signal sampling and downconversion by subsampling to alleviate the requirements for additional front-end filters and to mitigate the effects of noise and out-of-band signal aliasing, thereby facilitating use in integrated high-quality radio receivers. The charge-domain sampling technique studied here allows simple integration of both continuous-and discrete-time filtering functions into high-frequency signal sampling. Gated current integration results in a lowpass sin(x)/x(sinc(x)) response capable of performing built-in anti-aliasing filtering in baseband signal sampling. Weighted integration of several successive current samples can be further used to obtain an embedded discrete-time finite-impulse-response (FIR) filtering response, which can be used for internal anti-aliasing and image-rejection filtering in the downconversion of bandpass signals by subsampling. The detailed analysis of elementary charge-domain sampling circuits presented here shows that the use of integrated FIR filtering with subsampling allows acceptable noise figures to be achieved and can provide effective internal anti-aliasing rejection. The new methods for increasing the selectivity of elementary charge-domain sampling circuits presented here enable the integration of advanced, digitally programmable FIR filtering functions into high-frequency signal sampling, thereby markedly relieving the requirements for additional anti-aliasing, image rejection and possibly even channel selection filters in a radio receiver. BiCMOS and CMOS IF sampler implementations are presented in order to demonstrate the feasibility of the charge-domain sampling technique for integrated anti-aliasing and image-rejection filtering in IF signal quadrature downconversion by subsampling. Circuit measurements show that this sampling technique for built-in filtering results in an accurate frequency response and allows the use of high subsampling ratios while still achieving a competitive dynamic range.

Page generated in 0.0369 seconds