• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The collective dynamics of self-propelled particles in confining environments

Marsden, Elliot James January 2016 (has links)
Self-propelled particles are a class of far-from-equilibrium systems which present many complex, emergent features that are not obvious from the microscopic dynamics. Simulations of well-chosen instances of such systems are a powerful yet tractable method of investigating many real-world phenomena. The frequently non-time-reversible interactions of many cases of self-propelled particles with surfaces means that the environment has an impact on large-scale behaviour in a way that would not be true for particles close to thermal equilibrium. This work investigates several examples of such systems, and compares them with experimental results for comparable systems: firstly, the spatial distribution of smooth-swimming mutants of Eschericia Coli within water-in-oil emulsion is investigated, and its dependence on inter-bacterial interactions and the size of water droplets. The nature of bacterial collisions is inferred through data analysis and simulation. Secondly, pattern formation by chemotactic run-and-tumble bacteria due to secretion of a chemoattractant by the bacteria themselves, demonstrating a range of approaches to control the formation of biofilms by bacteria. Finally the dependence of the bulk transport properties of chemotactic self-propelled particles in porous environments, on their detailed dynamics, is probed: how they interact with obstacles, their form of chemotactic response, their ability to actively enhance their rotational noise, and their method of sensing chemical gradients.

Page generated in 0.0881 seconds