• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ruffed grouse natality, chick survival, and brood micro-habitat selection in the southern Appalachians

Haulton, G. Scott 30 June 1999 (has links)
Natality characteristics were calculated for 3 regions in the southern Appalachians (Ridge and Valley, Alleghany Plateau, and Ohio River Valley). I report data collected in the first 2 years of a long term (> 6 years) study conducted by the Appalachian Cooperative Grouse Research Project (ACGRP). Nesting rate, pooled over all regions, was 83.6% in 1997 and 79.7% in 1998. In the 2-year period, the Alleghany Plateau reported the highest nesting rate (97.6%) while the Ohio River Valley reported the lowest rate (54.2%). Overall hen success rates were 81.5% in 1997 and 56.9% in 1998. Yearling hen success rates were as high or higher than adults. Adult hen success was 85.7% in 1997 and 48.5% in 1998; yearling hen success was 86.7% in 1997 and 82.3% in 1998. Additionally, I found a lower renest rate (8% over 2 years) in the southern Appalachians than previous studies have reported. The mean first-nest clutch size in the southern Appalachian region was considerably lower (9.5, years and regions pooled) than that reported for other portions of ruffed grouse range. Recommendations are given on how ACGRP natality data collection may be improved in upcoming years. Ruffed grouse chick survival estimates were calculated from data collected in the first 2 years of a long term ACGRP study as well as data collected separate from ACGRP protocol. First-week chick survival estimates ranged from 0.18 to 0.32 in 1997 and 0.45 to 0.48 in 1998. Late brood season survivorship values (0.11-0.13 at week 5, 0.07 at week 10) were considerably lower in the southern Appalachians than those reported from more northern portions of ruffed grouse range. Additionally, the mean number of chicks per brood in July was lower in the southern Appalachians than that reported in the Great Lakes region during July and August. Recommendations are given on how ACGRP chick count data collection may be improved in upcoming years. I compared micro-habitat characteristics at known brood locations with randomly selected locations to determine which characteristics are selected by ruffed grouse hens and broods in the southern Appalachians. In the first half of the brood season (weeks 1-6) hens and broods selected sites with tall, complete, vegetative ground cover. Additionally, broods selected forested sites with a well-developed canopy, rather than areas affected by large canopy gaps or openings. Higher ground cover at brood sites may have been due to a lack of midstory structure. The abundance of arthropods, fruit, and forage at brood flush sites was higher during the first few weeks of the brood season; this was possibly due to flush sites being located in open, mid-age or mature forest. Several authors have speculated that as the chicks' diet shifts from primarily arthropods to fruit and forage at approximately 3 weeks of age, the habitat selected by hens and their broods may change to accommodate this dietary shift. In my study, a change in habitat selection did not occur between weeks 3 and 4 as expected but after week 6 and may indicate the chicks' dietary shift occurs later than some have predicted. / Master of Science
2

Greater Sage-Grouse Ecology, Chick Survival, and Population Dynamics, Parker Mountain, Utah

Dahlgren, David K. 01 May 2009 (has links)
We estimated survival of ~ 1-day-old chicks to 42 days based on radio-marked individuals for the Parker Mountain greater sage-grouse (Centrocercus urophasianus) population. Chick survival was relatively high (low estimate of 0.41 and high estimate of 0.50) compared to other studies. Brood-mixing occurred for 21 % of radio-marked chicks, and within 43 % of radio-marked broods. Our study showed that brood-mixing may be an important ecological strategy for sage-grouse, because chicks that brood-mixed experienced higher survival. Additionally, modeling of chick survival suggested that arthropod abundance is important during the early brood-rearing period (1 - 21 days). We also used life-cycle modeling (perturbation analyses and Life Table Response Experiments) to assess the importance of various vital rates within this population. We determined that adult hen survival and production (chick and fledgling survival) had the most influence on growth rate. Moreover, we assessed various methods (walking, spotlight, and pointing dog) for counting sage-grouse broods. Spotlight and pointing dog methods were more effective than walking flush counts, and the latter may underestimate chick survival.
3

Ecology and Management of a High Elevation Southern Range Greater Sage-Grouse Population: Vegetation Manipulation, Early Chick Survival, and Hunter Motivations

Guttery, Michael R. 01 December 2010 (has links)
My research provided new information concerning the management, ecology, and conservation of greater sage-grouse (Centrocercus urophasianus). I report the results of an experiment using strategic intensive sheep grazing to enhance the quality of greater sage-grouse brood-rearing habitat. Although forb cover, an important component of brood-rearing habitat, responded positively to the grazing treatment, the response of other habitat variables was suppressed because the plots were not protected from domestic and wild herbivores during the years following the treatments. Measurements taken in grazing exclosures confirmed that herbivory by both large and small animals had significant impacts on vegetation. However, despite the suppressed habitat response, sage-grouse preferred the treated plots over the controls. In another chapter, I modeled survival rates of sage-grouse chicks to 42-days of age. Average chick survival across my study was high (39%). Survival varied across years and was affected by demographic, behavioral, and habitat factors. The top habitat model indicated that chick survival was positively related to grass cover and was higher in areas dominated by black sagebrush (Artemisia nova) than in big sagebrush (A. tridentata). The top model with demographic/behavioral factors indicated that survival was affected by interactions between hen age and brood mixing as well as between hatch date and brood mixing. In my last chapter I report on a survey of Utah sage-grouse hunter motivations and satisfaction. In 2008 and 2009 I surveyed over 600 sage-grouse hunters in Utah to determine why they chose to apply for sage-grouse hunting permits and what factors contributed to a satisfactory hunting experience. Originally, I had hypothesized that the impending Endangered Species Act listing petition for greater sage-grouse motivated hunters to pursue the species before they lost the opportunity. This hypothesis was not supported by the data. The majority of hunters indicated that they chose to hunt sage-grouse because it was a tradition or because it provided an opportunity to spend time outdoors with family. Additionally, Utah sage-grouse hunter satisfaction was influenced by whether or not the hunter was successful in harvesting at least one bird.
4

Wildfire Impacts on Nest Provisioning and Survival of Alaskan Boreal Owls

Anderson, Aaron George 25 April 2017 (has links)
No description available.

Page generated in 0.0332 seconds