1 |
Design and Synthesis of Mixed-Metal Supramolecular Complexes Incorporating Specialized Light Absorbing Units to Investigate Processes Relevant to Catalyst FunctionWagner, Alec T. 15 June 2015 (has links)
The goal of this research was to develop a series of mixed-metal supramolecular complexes with specialized light absorbing units to probe perturbation of excited-state properties by ligand deuteration and long-term complex stability via racemization of initially enantiopure light absorbing subunits. Varying bidentate polypyridyl terminal ligands (TL), bridging ligands (BL), reactive metal center (RM), or number of Ru(II) light absorbers (LA) tunes the electrochemical, spectroscopic, photophysical, and photochemical properties within the supramolecular architecture. Ru(II) monometallics of the design [(bpy)2Ru(prolinate)](PF6) utilize prolinate as a chiral directing ligand to impart chirality to the Ru(II) LAs in the synthesis of more sophisticated supramolecular complexes. Ru(II) monometallics of the design [(TL)2Ru(BL)](PF6)2 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) covalently couple two TLs and one BL to a central Ru(II) metal center forming a LA subunit. Larger bi- and trimetallic complexes are formed by coupling an additional Ru(II), Rh(III), or Pt(II) metal center to an existing Ru(II) LA through a BL. Ru(II),Ru(II), Ru(II),Rh(III), and Ru(II),Pt(II) bimetallics of the design [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [(TL)2Ru(BL)PtCl2](PF6)2 (TL/TL′ = bpy or d8-bpy; BL = dpp or d10-dpp) couple only one Ru(II) LA to a Ru(II), Rh(III), or Pt(II) metal center through the BL. Ru(II),Rh(III),Ru(II) trimetallics of the design [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp) covalently couple two Ru(II) LAs to a central Rh(III) RM through polyazine BLs.
The complexes discussed herein are synthesized using a building block approach, permitting modification of the supramolecular architecture through multiple synthetic steps. Electrochemical analysis of the mono-, bi-, and trimetallic complexes displays several common features: a Ru-based HOMO and either a bridging ligand or Rh-based LUMO. TL and BL modification by ligand deuteration does not affect the electrochemistry of the Ru(II), Ru(II),Ru(II), Ru(II),Rh(III), or Ru(II),Rh(III),Ru(II) complexes. Likewise, utilizing a single enantiomer of the LA subunit does not modify the redox behavior of Ru(II), Ru(II),Pt(II), or Ru(II),Rh(III),Ru(II) complexes. All of the mono-, bi-, and trimetallic complexes are efficient light absorbers throughout the UV and visible with π→π* intraligand (IL) transitions in the UV and Ru(dπ)→ligand(π*) metal-to-ligand charge transfer (MLCT) transitions in the visible. Ligand deuteration does not affect the light absorbing properties of the complexes, while incorporation of chiral LA subunits imparts a preference for circularly polarized light (CPL) absorbance into supramolecular complexes. Photoexcitation of the Ru(dπ)→dpp(π*) 1MLCT results in near unity population of short-lived, weakly emissive Ru(dπ)→dpp(π*) ³MLCT excited state. In the Ru(II), Ru(II),Ru(II), and Ru(II),Pt(II) complexes, the 3MLCT excited state relaxes to the ground state by emission of a photon or vibrational relaxation processes. In the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes, the 3MLCT excited state is efficiently quenched by intramolecular electron transfer to populate a non-emissive Ru(dπ)→'Rh(dσ*) metal-to-metal charge transfer (3MMCT) excited state. Utilizing a deuterated BL, the excited-state lifetimes and quantum yield of emission (Φem) are increased for Ru(II), Ru(II),Ru(II), Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes.
The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes have previously been shown to be exceptional photochemical molecular devices (PMD) for photoinitiated electron collection (PEC). The ability of these complexes to undergo multiple redox cycles, efficiently absorb light, populate reactive excited states, and collect electrons at a reactive Rh metal center fulfills the requirements for H2O reduction photocatalysts. Photolysis of the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes with 470 nm light in the presence of a sacrificial electron donor and H2O substrate yields photocatalytic H2 production. Varying the BL from dpp to d10-dpp in the bimetallic architecture results in enhanced, although relatively low, catalyst efficiency producing 40 ± 10 μL H2 with dpp and 80 ± 10 μL H2 with d10-dpp in a CH3CN solvent system after 48 h photolysis. The trimetallic architecture showed no enhancement in photocatalytic efficiency and produced 210 ± 20 μL H2 with dpp and 180 ± 20 μL H2 with d10-dpp in a DMF solvent system after 20 h photolysis. The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes' behavior differs in that the excited state lifetime is the most important factor for bimetallic catalyst functioning, but intramolecular electron transfer is the most important factor for the trimetallic photocatalysts.
Another important property to understand with these catalysts is their long-term stability in solution. In order for these mixed-metal complexes to be industrially useful, they must perform for long periods of time without degradation in the presence of H2O substrate and electron donors in solution. Previous examinations of Ru(II),Rh(III),Ru(II) photocatalysts have found that they can perform for ca. 50 h of photolysis, but are not as effective as the initial few hours. Special care was taken to synthesize enantiopure LA subunits and incorporate them into Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures to study their photolytic stability by monitoring how long the complexes retained their chirality using electronic circular dichroism (ECD) spectroscopy. After photolyzing for longer than 200 hours with an LED light source, the quantum yield for racemization (Φrac) for the Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures is 2.6 ⨉ 10⁻⁸ and 0.72 ⨉ 10⁻⁸ respectively. Also, by photolyzing in the presence of free bpy, the bi- and trimetallic complexes racemize via a non-dissociative trigonal twist mechanism.
This dissertation reports the detailed analysis of the electrochemical, spectroscopic, photophysical, and photochemical properties of a series of selectively deuterated [(TL)2Ru(BL)](PF6)2, [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) supramolecular complexes and a series of [(bpy)2Ru(prolinate)](PF6), [(bpy)2Ru(dpp)](PF6)2, [(bpy)2Ru(dpp)PtCl2](PF6)2, and [{(bpy)2Ru(dpp)}2RhCl2](PF6)5 supramolecular complexes with enantiopure light absorbing subunits. The design of the supramolecular architecture and intrinsic properties of each subunit contribute to the function of these systems. The careful design, synthesis and purification, thorough characterizations, and experimentation have led to deeper understanding of the molecular properties required for efficient H2O reduction. / Ph. D.
|
Page generated in 0.0542 seconds