• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Synthesis, and Characterization of Aqueous Polymeric Hybrid Composites and Nanomaterials of Platinum(II) and Gold(I) Phosphorescent Complexes for Sensing and Biomedical Applications

Upadhyay, Prabhat Kumar 12 1900 (has links)
The two major topics studied in this dissertation are the gold(I) pyrazolate trimer {[Au(3-R,5-R’)Pz]3} complexes in aqueous chitosan polymer and phosphorescent polymeric nanoparticles based on platinum(II) based complex. The first topic is the synthesis, characterization and optical sensing application of gold(I) pyrazolate trimer complexes within aqueous chitosan polymer. A gold(I) pyrazolate trimer complex, {[Au(3-CH3,5-COOH)Pz]3}, shows high sensitivity and selectivity for silver ions in aqueous media, is discussed for optical sensing and solution-processed organic light emitting diodes (OLEDs) applications. Gold(I) pyrazolate trimer complexes are bright red emissive in polymeric solution and their emission color changes with respect to heavy metal ions, pH and dissolved carbon dioxide. These photophysical properties are very useful for designing the optical sensors. The phosphorescent polymeric nanoparticles are prepared with Pt-POP complex and polyacrylonitrile polymer. These particles show excellent photophysical properties and stable up to >3 years at room temperature. Such nanomaterials have potential applications in biomedical and polymeric OLEDs. The phosphorescent hybrid composites are also prepared with Pt-POP and biocompatible polymers, such as chitosan, poly-l-lysine, BSA, pnipam, and pdadmac. Photoluminescent enhancement of Pt-POP with such polymers is also involved in this study. These hybrid composites are promising materials for biomedical applications such as protein labeling and bioimaging.

Page generated in 0.0452 seconds