• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrosion-induced release of zinc and copper in marine environments

Sandberg, Jan January 2006 (has links)
<p>This licentiate study was initiated by copper, zinc and galvanized steel producers in Europe, who felt a need to assess runoff rates of copper and zinc from the pure metals and commercial products at marine exposure conditions. Their motive was the increasing concern in various European countries and the on-going risk assessments of copper and zinc within the European commission. Also the circumstance that available runoff rates so far, had been reported for mainly urban exposure conditions, rather than marine. A collaboration was therefore established with the French Corrosion Institute, which runs a marine test site in Brest, and a set of vital questions were formulated. Their answers are the essence of this licentiate study.</p><p>Based on the ISO corrosivity classification and one-year exposures, the marine atmosphere of Brest is fairly corrosive for zinc (class C3) and highly corrosive for copper (C4). Despite higher corrosivity classifications for both metals in Brest compared to the urban site of Stockholm, used as a reference site, nearly all runoff rates assessed for copper, zinc and their commercial products were lower in Brest compared to Stockholm. This was attributed to a higher surface wetting in Brest and concomitant higher removal rate of deposited chloride and sulphate species from the marine-exposed surfaces. The comparison shows that measured corrosion rates cannot be used to predict runoff rates, since different physicochemical processes govern corrosion and runoff respectively.</p><p>For copper, the runoff rate in Brest was approximately 1.1 g m<sup>-2</sup> yr<sup>-1</sup> with cuprite (Cu2O) as main patina constituent. During periods of very high chloride and sulphate deposition, paratacamite (Cu<sub>2</sub>Cl(OH)<sub>3</sub>) formed which increased the runoff rate to 1.5 g m<sup>-2</sup> yr<sup>-1</sup>. For zinc, with hydrozincite (Zn<sub>5</sub>(CO<sub>3</sub>)2(OH)<sub>6</sub>) as the main patina constituent, the runoff rate was relatively stable at 2.6 g m<sup>-2</sup> yr<sup>-1</sup> throughout the year, despite episodes of heavy chloride and sulphate deposition.</p><p>The application of organic coatings of varying thickness on artificially patinated copper or on different zinc-based products resulted in improved barrier properties and reduced runoff rates that seem highly dependent on thickness. The thickest organic coating (150 µm thick), applied on hot dipped galvanized steel, reduced the runoff rate by a factor of 100. No deterioration of organic coatings was observed during the one-year exposures. Alloying zinc-based products with aluminium resulted in surface areas enriched in aluminium and concomitant reduced zinc runoff rates.</p><p>The release rate and bioavailability of copper from different anti-fouling paints into artificial seawater was also investigated. It turned out that the release rate not only depends on the copper concentration in the paint, but also on paint matrix properties and other released metal constituents detected. Far from all copper was bioavailabe at the immediate release situation. In all, the results suggest the importance of assessing the ecotoxic response of anti-fouling paints not only by regarding the copper release, but rather through an integrated effect of all matrix constituents.</p>
2

Atmospheric corrosion of zinc-aluminum and copper-based alloys in chloride-rich environments : Microstructure, corrosion initiation, patina evolution and metal release

Zhang, Xian January 2014 (has links)
Fundamental understanding of atmospheric corrosion mechanisms requires an in-depth understanding on the dynamic interaction between corrosive constituents and metal/alloy surfaces. This doctoral study comprises field and laboratory investigations that assess atmospheric corrosion and metal release processes for two different groups of alloys exposed in chloride-rich environments. These groups comprise two commercial Zn-Al alloy coatings on steel, Galfan™ (Zn5Al) and Galvalume™ (Zn55Al), and four copper-based alloys (Cu4Sn, Cu15Zn, Cu40Zn and Cu5Zn5Al). In-depth laboratory investigations were conducted to assess the role of chloride deposition and alloy microstructure on the initial corrosion mechanisms and subsequent corrosion product formation. Comparisons were made with long-term field exposures at unsheltered marine conditions in Brest, France. A multitude of surface sensitive and non-destructive analytical methods were adopted for detailed in-situ and ex-situ analysis to assess corrosion product evolution scenarios for the Zn-Al and the Cu-based alloys. Scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS) were employed for morphological investigations and scanning Kelvin probe force microscopy (SKPFM) for nobility distribution measurements and to gain microstructural information. SEM/EDS, infrared reflection-absorption spectroscopy (IRAS), confocal Raman micro-spectroscopy (CRM) and grazing incidence x-ray diffraction (GIXRD) were utilized to gain information on corrosion product formation and possibly their lateral distribution upon field and laboratory exposures. The multi-analytical approach enabled the exploration of the interplay between the microstructure and corrosion initiation and corrosion product evolution. A clear influence of the microstructure on the initial corrosion product formation was preferentially observed in the zinc-rich phase for both the Zn-Al and the Cu-Zn alloys, processes being triggered by microgalvanic effects. Similar corrosion products were identified upon laboratory exposures with chlorides for both the Zn-Al and the Cu-based alloys as observed after short and long term marine exposures at field conditions. For the Zn-Al alloys the sequence includes the initial formation of ZnO, ZnAl2O4 and/or Al2O3 and subsequent formation of Zn6Al2(OH)16CO3·4H2O, and Zn2Al(OH)6Cl·2H2O and/or Zn5(OH)8Cl2·H2O. The patina of Cu sheet consists of two main layers with Cu2O predominating in the inner layer and Cu2(OH)3Cl in the outer layer, and with a discontinuous presence of CuCl in-between. Additional patina constituents of the Cu-based alloys include SnO2, Zn5(OH)6(CO3)2, Zn6Al2(OH)16CO3·4H2O and Al2O3. General scenarios for the evolution of corrosion products are proposed as well as a corrosion product flaking mechanism for some of the Cu-based alloys upon exposure in chloride-rich atmospheres. The tendency for corrosion product flaking was considerably more pronounced on Cu sheet and Cu4Sn compared with Cu15Zn and Cu5Al5Zn. This difference is explained by the initial formation of zinc- and zinc-aluminum hydroxycarbonates Zn5(OH)6(CO3)2 and Zn6Al2(OH)16CO3·4H2O on Cu15Zn and Cu5Al5Zn, corrosion products that delay the formation of CuCl, a precursor of Cu2(OH)3Cl. As a result, the observed volume expansion during transformation of CuCl to Cu2(OH)3Cl, and the concomitant flaking process of corrosion products, was less severe on Cu15Zn and Cu5Al5Zn compared with Cu and Cu4Sn in chloride-rich environments. The results confirm the barrier effect of poorly soluble zinc and zinc-aluminum hydroxycarbonates Zn5(OH)6(CO3)2 and Zn6Al2(OH)16CO3·4H2O, which results in a reduced interaction between chlorides and surfaces of Cu-based alloys, and thereby reduced formation rates of easily flaked off corrosion products. From this process also follows reduced metal release rates from the Zn-Al alloys. / Bättre molekylär förståelse för metallers atmosfäriska korrosion kräver en fördjupad kunskap i det dynamiska samspelet mellan atmosfärens korrosiva beståndsdelar och metallytan. Denna doktorsavhandling omfattar laboratorie- och fältundersökningar av korrosions- och metallfrigöringsprocesser av två grupper av legeringar som exponerats i kloridrika atmosfärsmiljöer: två kommersiella Zn-Al beläggningar på stål, Galfan™ (Zn med 5% Al, förkortat Zn5Al) och Galvalume™ (Zn55Al), samt fyra kopparbaserade legeringar (Cu4Sn, Cu15Zn, Cu40Zn och Cu5Zn5Al). Undersökningar har genomförts i renodlade laboratorie-miljöer med för-deponerade NaCl-partiklar i en atmosfär av varierande relativ fuktighet. Syftet har varit att utvärdera betydelsen av kloriders deposition och legeringarnas mikrostruktur på korrosionsmekanismen samt bildandet av korrosionsprodukter. Jämförelser av korrosionsmekanismer har även gjorts efter flerårsexponeringar av samma legeringar i en marin fältmiljö i Brest, Frankrike. Undersökningarna har baserats på ett brett spektrum av analysmetoder för detaljerade studier dels under pågående atmosfärisk korrosion (in-situ), och dels efter avslutad korrosion (ex-situ). Legeringarnas mikrostruktur och tillhörande variation i ädelhet hos olika faser har undersökts med svepelektronmikroskopi och energidispersiv röntgenmikroanalys (SEM/EDS) samt med en variant av atomkraftsmikroskopi (engelska: scanning Kelvin probe force microscopy, SKPFM). Korrosionsprodukternas tillväxt har analyserats in-situ med infraröd reflektions-absorptionsspektroskopi (IRAS), samt morfologi och sammansättning av bildade korrosionsprodukter ex-situ med SEM/EDS, konfokal Raman mikro-spektroskopi (CRM) samt röntgendiffraktion vid strykande ifall (GIXRD). Det multi-analytiska tillvägagångssättet har medfört att det komplexa samspelet mellan de skilda legeringarnas mikrostruktur, korrosionsinitiering och bildandet av korrosionsprodukter kunnat studeras i detalj. En tydlig påverkan av mikrostruktur på det initiala korrosionsförloppet har kunnat påvisas. Korrosionsinitieringen sker företrädesvis i mer zinkrika faser för såväl Zn-Al- som Cu-Zn-legeringar och orsakas av mikro-galvaniska effekter mellan de mer zinkrika, mindre ädla, faserna och omgivande faser. Deponerade NaCl-partiklar påskyndar den lokala korrosionen oberoende av mikrostruktur. Snarlika sekvenser av korrosionsprodukter har kunnat påvisas såväl efter laboratorie- som fältexponeringar. För Zn-Al-legeringar bildas först ZnO, ZnAl2O4 och/eller Al2O3, därefter Zn6Al2(OH)16CO3·4H2O och Zn2Al(OH)6Cl·2H2O och/eller Zn5(OH)8Cl2·H2O. På ren koppar bildas ett inre skikt dominerat av Cu2O, ett mellanskikt av CuCl och ett yttre skikt med i huvudsak Cu2(OH)3Cl. Beroende på legeringstillsats har även SnO2 och Zn5(OH)6(CO3)2 kunnat identifieras. En mekanism för flagning av korrosionsprodukter på kopparbaserade legeringar i kloridrika atmosfärer har utvecklats. Tendensen för flagning har visat sig vara mycket mer uttalad på ren Cu och Cu4Sn än på Cu15Zn och Cu5Al5Zn. Skillnaden kan förklaras med hjälp av det tidiga bildandet av Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O på Cu15Zn och Cu5Al5Zn som fördröjer bildandet av CuCl, en föregångare till Cu2(OH)3Cl. Därigenom hämmas även den observerade volymexpansionen som sker när CuCl omvandlas till Cu2(OH)3Cl, en process som visar sig vara den egentliga orsaken till att korrosionsprodukterna flagar. Resultaten bekräftar barriäreffekten hos de mer svårlösliga faserna Zn5(OH)6(CO3)2 och Zn6Al2(OH)16CO3·4H2O, vilken dels resulterar i en minskad växelverkan mellan klorider och de legeringsytor där dessa faser kan bildas, och dels i en reducerad metallfrigöringshastighet. / <p>QC 20140915</p> / Autocorr, RFSR-CT-2009-00015 Corrosion of heterogeneous metal-metal assemblies in the automotive industry / Atmospheric corrosion and environmental metal dispersion from outdoor construction materials
3

Corrosion-induced release of zinc and copper in marine environments

Sandberg, Jan January 2006 (has links)
This licentiate study was initiated by copper, zinc and galvanized steel producers in Europe, who felt a need to assess runoff rates of copper and zinc from the pure metals and commercial products at marine exposure conditions. Their motive was the increasing concern in various European countries and the on-going risk assessments of copper and zinc within the European commission. Also the circumstance that available runoff rates so far, had been reported for mainly urban exposure conditions, rather than marine. A collaboration was therefore established with the French Corrosion Institute, which runs a marine test site in Brest, and a set of vital questions were formulated. Their answers are the essence of this licentiate study. Based on the ISO corrosivity classification and one-year exposures, the marine atmosphere of Brest is fairly corrosive for zinc (class C3) and highly corrosive for copper (C4). Despite higher corrosivity classifications for both metals in Brest compared to the urban site of Stockholm, used as a reference site, nearly all runoff rates assessed for copper, zinc and their commercial products were lower in Brest compared to Stockholm. This was attributed to a higher surface wetting in Brest and concomitant higher removal rate of deposited chloride and sulphate species from the marine-exposed surfaces. The comparison shows that measured corrosion rates cannot be used to predict runoff rates, since different physicochemical processes govern corrosion and runoff respectively. For copper, the runoff rate in Brest was approximately 1.1 g m-2 yr-1 with cuprite (Cu2O) as main patina constituent. During periods of very high chloride and sulphate deposition, paratacamite (Cu2Cl(OH)3) formed which increased the runoff rate to 1.5 g m-2 yr-1. For zinc, with hydrozincite (Zn5(CO3)2(OH)6) as the main patina constituent, the runoff rate was relatively stable at 2.6 g m-2 yr-1 throughout the year, despite episodes of heavy chloride and sulphate deposition. The application of organic coatings of varying thickness on artificially patinated copper or on different zinc-based products resulted in improved barrier properties and reduced runoff rates that seem highly dependent on thickness. The thickest organic coating (150 µm thick), applied on hot dipped galvanized steel, reduced the runoff rate by a factor of 100. No deterioration of organic coatings was observed during the one-year exposures. Alloying zinc-based products with aluminium resulted in surface areas enriched in aluminium and concomitant reduced zinc runoff rates. The release rate and bioavailability of copper from different anti-fouling paints into artificial seawater was also investigated. It turned out that the release rate not only depends on the copper concentration in the paint, but also on paint matrix properties and other released metal constituents detected. Far from all copper was bioavailabe at the immediate release situation. In all, the results suggest the importance of assessing the ecotoxic response of anti-fouling paints not only by regarding the copper release, but rather through an integrated effect of all matrix constituents. / QC 20101126

Page generated in 0.0946 seconds