1 |
The Observed Stable Carbon Isotope Fractionation Effects of a Chloroform and 1,1,1-Trichloroethane Dechlorinating CultureChan, Calvin 21 November 2012 (has links)
Little is known about the enzyme-substrate interactions occurring during the dechlorination of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) by the enrichment culture containing Dehalobacters, hereafter called DHB-CF/MEL. Compound specific isotope analysis (CSIA) is used to investigate the factors which may affect the isotope fractionation observed for CF and 1,1,1-TCA dechlorination. This thesis reports the first isotope enrichment factors observed for CF biodegradation at -27.5‰ ± 0.9‰, thus providing fundamental information for comparing isotope enrichment factors observed during trichlorinated alkane degradation by DHB-CF/MEL. The thesis also reports how the presence of CF and 1,1,1-TCA influences isotope fractionation and explores the possible influence of substrate inhibition on isotope fractionation during 1,1,1-TCA dechlorination. The data suggests that substrate inhibition during 1,1,1-TCA dechlorination by DHB-CF/MEL may not affect carbon isotope fractionation. The results suggest that CSIA is a promising monitoring tool even for the simultaneous biodegradation of CF and 1,1,1-TCA at different 1,1,1-TCA starting concentration.
|
2 |
The Observed Stable Carbon Isotope Fractionation Effects of a Chloroform and 1,1,1-Trichloroethane Dechlorinating CultureChan, Calvin 21 November 2012 (has links)
Little is known about the enzyme-substrate interactions occurring during the dechlorination of chloroform (CF) and 1,1,1-trichloroethane (1,1,1-TCA) by the enrichment culture containing Dehalobacters, hereafter called DHB-CF/MEL. Compound specific isotope analysis (CSIA) is used to investigate the factors which may affect the isotope fractionation observed for CF and 1,1,1-TCA dechlorination. This thesis reports the first isotope enrichment factors observed for CF biodegradation at -27.5‰ ± 0.9‰, thus providing fundamental information for comparing isotope enrichment factors observed during trichlorinated alkane degradation by DHB-CF/MEL. The thesis also reports how the presence of CF and 1,1,1-TCA influences isotope fractionation and explores the possible influence of substrate inhibition on isotope fractionation during 1,1,1-TCA dechlorination. The data suggests that substrate inhibition during 1,1,1-TCA dechlorination by DHB-CF/MEL may not affect carbon isotope fractionation. The results suggest that CSIA is a promising monitoring tool even for the simultaneous biodegradation of CF and 1,1,1-TCA at different 1,1,1-TCA starting concentration.
|
Page generated in 0.1379 seconds