• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 19
  • 9
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 28
  • 28
  • 28
  • 25
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Imaging of fluorescence emission signals from healthy and infected leaf tissues / Imaging of fluorescence emission signals from healthy and infected leaf tissues

BENEDIKTYOVÁ, Zuzana January 2009 (has links)
Auto-fluorescence emission of plant tissues can be a powerful reporter on plant biochemistry and physiology since it originates in substances inherent to primary or secondary metabolism. Plant bodies contain a plethora of intrinsic fluorescent compounds emitting practically all wavelengths of visible light. Moreover, the spectrum of fluorescent reporter signals was recently extended by a variety of fluorescent proteins that provide a new tool to mark whole cells or sub-cellular structures, study protein localization and monitor gene expression and molecule interactions. The imaging of such fluorescence signals reveals a possibility to acquire the information from as many as millions of points simultaneously, in vivo and in a non-invasive way thereby preserving integrity of cells and whole organisms. Imaging is particularly suited to visualize heterogeneity such as a localized immune response to invading pathogens. It can be applied both at macro- as well as micro-scales in two and three dimensions. The recent advancement in microscopy, the multi-photon microscopy, has made possible to monitor fluorescence signals, such as NAD(P)H fluorescence from intact leaf interior, that have been hidden to single-photon techniques.

Page generated in 0.0672 seconds