• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 55
  • 55
  • 20
  • 14
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Attempts on chromatin immunoprecipitation with \kur{C. elegans} nuclear receptor NHR-25 / Attempts on chromatin immunoprecipitation with \kur{C. elegans} nuclear receptor NHR-25

POSPĚCH, Alexandr January 2010 (has links)
The aim of the work presented in this thesis was to establish chromatin immunoprecipitation method in our laboratory as a tool to study target genes of the nuclear receptor NHR-25 in C. elegans. Once the method is established, it will be also useful for studies of other DNA binding proteins. ChIP was performed in transiently transfected cells HEK293 and analyzed using PCR and qPCR. Although ChIP is typically used to find authentic target genes in the cell or in organisms, testing protein-DNA interactions by ChIP in transient transfection system (by transfecting both the expression vector of the protein of interest and a vector containing potential binding sequence/promoter of the protein) can be useful as it serves as a relatively quick tool to confirm the direct binding. Since the detection is by PCR, this method is sensitive yet less costly non radioactive method to analyze protein-DNA interaction. For the first step towards ChIP in C. elegans; pulling down tagged protein directly from the worm was also performed as a preparation for in vivo analysis of NHR-25 regulated genes.
2

Role of UCHL1 in regulating gene expression in prostate cancer cells

Ilic, Aleksandar 28 August 2014 (has links)
Ubiquitin C-terminal hydrolase L1 (UCHL1) is a multifunctional protein primarily expressed in neuronal cells and involved in numerous cellular processes. UCHL1 has been linked with neurodegenerative diseases and a wide range of cancers but its specific role remains unknown. Previous UCHL1 knockdown studies have shown that UCHL1 controls the expression of pro- and anti-apoptotic genes as well as genes involved in cell cycle regulation but it is unknown how UCHL1 regulates these genes. We have shown that UCHL1 is cross-linked to DNA in DU145 but not in LNCaP or PC3 prostate cancer cells. Therefore, we hypothesized that UCHL1 regulates the expression of pro- or anti-apoptotic genes as well as the genes involved in the cell cycle through its interaction with DNA. By utilizing ChIP and ChIP-seq analyses it is possible to determine the UCHL1 target sequences on the genomic DNA. It was shown that UCHL1 is only expressed in DU145 but not in LNCaP, PC3 or C4-2 prostate cancer cell lines. Additionally, UCHL1 is expressed and cross-linked to DNA in HEK293T cells. It is believed that UCHL1 is silenced by upstream promoter methylation when it is not expressed. However, treatment with the epigenetic drugs 5-aza-2′-deoxycytidine and trichostatin A (TSA) did not result in induction of UCHL1 expression in LNCaP, PC3 or C4-2 prostate cancer cell lines. UCHL1 is also associated with p53. However, ChIP assay results have shown that UCHL1 and p53 do not bind to genomic DNA of upstream promoter regions CDKN1A and BAX genes. Additionally, through UCHL1 ChIP-seq analyses in DU145 and HEK293T cells, we discovered that UCHL1 co-localizes to the DNA with the shelterin complex shedding light on a new role of UCHL1 that has never been described before. / October 2014
3

GENE REGULATORY NETWORKS OF AGL15 A PLANT MADS TRANSCRIPTION FACTOR

Zhu, Cong 01 January 2005 (has links)
Plant embryogenesis is an intriguing developmental process that is controlled by many genes. AGAMOUS Like 15 (AGL15) is a MADS-domain transcriptional regulator that accumulates preferentially during this stage. However, at the onset of this work it was unknown which genes are regulated by AGL15 or how AGL15 is regulated. This dissertation is part of the ongoing effort to understand the biological roles of AGL15. To decipher how AGL15 functions during plant development, a chromatin immunoprecipitation (ChIP) approach was adapted to obtain DNA fragments that are directly bound by AGL15 in vivo. Putative AGL15 targets were isolated, and binding and regulation was confirmed for one such target gene, ABF3. In addition, microarray experiments were performed to globally assess genes that are differentially expressed between wild type and agl15 young seeds. Among them, a gene, At5g23405, encoding an HMGB domain protein was identified and its response to AGL15 was confirmed. Preliminary results suggest that the loss-of-function of At5g23405 might have an effect on somatic embryogenesis, consistent with AGL15 repression of the expression of this gene. Lastly, to address the question about how the regulator is regulated, the cis elements controlling the expression of AGL15 must be identified. Deletion analysis of the AGL15 promoter indicated the presence of putative positive and negative cis elements contributing to the expression of AGL15. Further analysis suggested that AGL15 regulates the expression of its own gene and this regulation may partially be explained by the direct binding of the protein to the AGL15 promoter. The data presented in this dissertation demonstrate that ChIP can be used to identify previously unsuspected targets of AGL15. Based on ChIP, a ChIP-chip technique is being developed in the lab to allow a more global analysis of in vivo binding sites. The identification of target genes and cis elements in AGL15 promoter is a step towards characterization of the biological roles of AGL15.
4

Characterising the role of TLE1 in Crohn's disease

Sharma, Nidhi January 2016 (has links)
The inflammatory bowel diseases (IBD) are chronic, relapsing and remitting diseases of the gastrointestinal tract. There are two main types of IBD: Crohn’s disease (CD) and ulcerative colitis (UC). The prevalence of IBD is highest in the western world, approximately 100-200 people per 100,000 are affected. In recent years there has been a marked increase in the incidence of CD and UC, in both adults and children (Henderson et al., 2012; Molodecky et al., 2012). This is particularly relevant in Scotland where recent research shows that there has been a 79% increase in the number of cases of paediatric IBD since the 1990’s (Henderson et al., 2012). A yeast 2 hybrid screen identified TLE1as an interacting partner of the known CD susceptibility gene; Nucleotide- binding oligomerisation protein 2 (Nod2). An initial genome wide association study (GWAS) also found an association between the rs6559629 SNP, located in Tle1 and ileal CD (p =3.1 x 10-5) and showed that carriage of the Tle1 risk allele increases the effects of Nod2 mutations in CD. TLE1 functions as a transcriptional co repressor in a variety of different cellular and developmental pathways The work presented in this thesis investigates the potential role of TLE1 in CD. This has been approached using four different strategies: sequencing TLE1 in CD patients and controls, analysing the effects of knocking down TLE1 on genome wide expression, investigating whether the known IBD susceptibility protein XBP1 binds to a predicted binding site in TLE1 and investigating TLE1 levels and localisation in human intestinal samples from CD patients and controls Sequencing TLE1 exons and introns 15/16 and 16/17 in a Scottish cohort of 24 CD patients and healthy controls identified a number of potentially pathogenic exonic and intronic SNPs. Two exonic SNPs and thirteen intronic SNPs were identified and these were further investigated in larger Scottish (203 CD cases, 190 HC) and European cohorts (6,333 CD cases and 15,056 HC) but were not present at statistically significantly different frequencies. Secondly, the effects of TLE1 knock down on genome wide expression were analysed using an Illumina HT12 expression chip. The results showed that TLE1 knock down significantly altered expression of 19 loci (Bonferroni) and 526 loci (FDR). Four of the 19 Bonferroni significant loci are potentially involved in CD: RIOK1 (p=4.3×10-3), SGPL1 (p=4.3×10-3), TUSC3 (p=1.8×10-2) and CCND1 (p=2.7×10-3). Furthermore, expression of SGPL1 and RIOK1 were shown to be differentially expressed at the mRNA level between inflamed patients and controls. The third approach investigates a predicted binding site for the known IBD susceptibility gene, XBP1 in TLE1 which was identified using the Haploreg program. This work shows, using chromatin immunoprecipitation, that exogenous XBP1 does not appear to bind to this predicted binding site. Finally, TLE1 expression was analysed in human intestinal resection samples from patients of known NOD2 status. This work shows that TLE1 and NOD2 are expressed in Paneth cells, however TLE1 expression is not altered in patients carrying CD associated NOD2 variants. In this work TLE1 sequence, expression and potential interacting proteins have been analysed. The results presented suggests multiple mechanisms by which TLE1 may be influencing susceptibility to CD including: the unfolded protein response (TUSC3), S1P signalling and ribosome biogenesis. They also implicate TLE1 in Paneth cell function alongside NOD2. The exact means by which TLE1 may play a role in IBD pathogenesis has yet to be fully elucidated.
5

Generating a Consistent Framework for Evaluating Cell Response to External Stimuli through Epigenetic Assessors

Wang, Bo 2011 May 1900 (has links)
Mesenchymal stem cells are more and more widely used in tissue engineering due to their pluripotency and no relative ethical problems. Traditional characterization techniques to detect mesenchymal stem cell states include flow cytometry, gene expressing profiling and immunohistochemistry. However, these methods can only provide transient and low level information from current RNA or protein levels about mesenchymal stem cells, which may cause problems when predicting the possible downstream lineages they will commit into. We have developed chromatin immunoprecipitation (ChIP)-based epigenetic technique to detect mesenchymal stem cell states. For the systems we tested, this epigenetic assessor successfully characterized cell state changes and gave similar results obtained from gene expression profiling or protein expression assay. This epigenetic technique can provide information about mesenchymal stem cells states from a more fundamental chromatin level, which is promising for predicting future lineages from current states.
6

A genetic and epigenetic editing approach to characterise the nature and function of bivalent histone modifications

Brazel, Ailbhe Jane January 2018 (has links)
In eukaryotes, DNA is wrapped around a group of proteins termed histones that are required to precisely control gene expression during development. The amino acids of both the globular domains and unstructured tails of these histones can be modified by chemical moieties, such as methylation, acetylation and ubiquitination. The ‘histone code’ hypothesis proposes that specific combinations of these and other histone modifications contain transcriptional information, which guides the cell machinery to activate or repress gene expression in individual cell types. Chromatin immunoprecipitation (ChIP) experiments using undifferentiated stem cell populations have identified the genomic co-localisation of histone modifications reported to have opposing effects on transcription, which is known as bivalency. The human α-globin promoter, a well-established model for the study of transcriptional regulation, is bivalent in embryonic stem (ES) cells and this bivalency is resolved once the ES cells terminally differentiate (i.e. only activating or repressing marks remain). In a humanised mouse model, the deletion of a bone fide enhancer within the human α-globin locus results in heterogeneous expression patterns in primary erythroid cells. Notably, this correlates with an unresolved bivalent state at this promoter in terminally differentiated cells. Using this mouse model it is not feasible to ascertain whether the transcriptional heterogeneity observed in the cells lacking an α-globin enhancer is reflective of epigenetic heterogeneity (i.e. a mixed population of cells) rather than co-localisation of bivalent histone modifications within the same cells. Furthermore, the functional contribution of bivalency to development has yet to be described. To address these difficulties, I aimed to generate a fluorescent reporter system for human α-globin to facilitate the separation of transcriptionally heterogeneous erythroid cells. This model will provide material for ChIP studies on transcriptionally active and inactive populations to determine whether the epigenetic bivalency is reflective of a mixed cell population or true bivalency. In addition, I aimed to produce epigenetic editing tools to target bivalent promoters, which in combination with in vitro differentiation assays would provide an interesting framework to test the function of bivalency during development. In this study, I extensively tested gene-editing strategies for generating a fluorescent reporter knock-in in humanised mouse ES cells. I validated the suitability of humanised mouse ES cell lines for gene targeting studies and optimised a robust in vitro differentiation protocol for studying erythropoiesis. I utilised both recombineering and CRISPR/Cas9 gene editing tools in tandem with PiggyBac transposon technology, to knock-in the reporter gene. I made significant steps in gene targeting and successfully inserted the reporter downstream of the α-globin gene. I also generated a cloning system to express site-specific DNA-binding domains (TALEs) fused to epigenetic regulators with the aim to resolve bivalent histone modifications in vitro. From preliminary tests using these fusion proteins targeting Nrp1, a bivalent promoter in mES cells, I observed mild but significant changes in gene expression although histone modifications were unchanged. The various tools generated and tested in this study provide a solid foundation for future development of genetic and epigenetic editing at the human α-globin and other bivalent loci.
7

Microfluidics for Low Input Epigenomic Analysis and Its Application to Brain Neuroscience

Deng, Chengyu 06 January 2021 (has links)
The epigenome carries dynamic information that controls gene expression and maintains cell identity during both disease and normal development. The inherent plasticity of the epigenome paves new avenues for developing diagnostic and therapeutic tools for human diseases. Microfluidic technology has improved the sensitivity and resolution of epigenomic analysis due to its outstanding ability to manipulate nanoliter-scale liquid volumes. In this thesis, I report three projects focusing on low-input, cell-type-specific and spatially resolved histone modification profiling on microfluidic platforms. First, I applied Microfluidic Oscillatory Washing-based Chromatin Immunoprecipitation followed by sequencing (MOWChIP-seq) to study the effect of culture dimensionality, hypoxia stress and bacterium infection on histone modification landscapes of brain tumor cells. I identified differentially marked regions between different culture conditions. Second, I adapted indexed ChIPmentation and introduced mu-CM, a low-input microfluidic device capable of performing 8 assays in parallel on different histone marks using as few as 20 cells in less than 7 hours. Last, I investigated the spatially resolved epigenome and transcriptome of neuronal and glial cells from coronal sections of adult mouse neocortex. I applied unsupervised clustering to identify distinct spatial patterns in neocortex epigenome and transcriptome that were associated with central nervous system development. I demonstrated that our method is well suited for scarce samples, such as biopsy samples from patients in the context of precision medicine. / Doctor of Philosophy / Epigenetic is the study of alternations in organisms not caused by alternation of the genetic codes. Epigenetic information plays pivotal role during growth, aging and disease. Epigenetic information is dynamic and modifiable, and thus serves as an ideal target for various diagnostic and therapeutic strategies of human diseases. Microfluidics is a technology that manipulates liquids with extremely small volumes in miniaturized devices. Microfluidics has improved the sensitivity and resolution of epigenetic analysis. In this thesis, I report three projects focusing on low-input, cell-type-specific and spatially resolved histone modification profiling on microfluidic platforms. Histone modification is one type of epigenetic information and regulates gene expression. First, we studied the influence of culture condition and bacterium infection on histone modification profile of brain tumor cells. Second, we introduced mu-CM, combining a low-input microfluidic device with indexed ChIPmentation and is capable of performing 8 assays in parallel using as few as 20 cells. Last, we investigated spatial variations in the epigenome and transcriptome across adult mouse neocortex, the outer layer of brain involving in higher-order function, such as cognition. I identified distinct spatial patterns responsible for central nervous system development using machine learning algorithm. Our method is well suited for studying scarce samples, such as cells populations isolated from patients in the context of precision medicine.
8

Erythroid Kruppel-Like Factor and the Cell Cycle: A Role beyond Globin Gene Regulation

Michael Tallack Unknown Date (has links)
Erythropoiesis, the process of producing mature erythrocytes from the haematopoietic stem cells (HSCs) that reside in the bone marrow, is tightly regulated at both the cell and molecular level by a well defined set of extracellular cytokine signals and intracellular transcription factors. Diseases affecting erythropoiesis are among the most commonly inherited conditions and result from disturbances to the cellular and molecular events that normally regulate this process. Erythroid Kruppel-like factor (EKLF/KLF1) is a transcription factor that is essential for erythropoiesis. EKLF is the founding member of the Kruppel-like factor family of transcription factors that bind to GC rich CACC-Box elements within gene promoters and activate transcription. The β-like globin genes are critical targets of EKLF through its binding at sites within the proximal promoters and the upstream locus control region (LCR) enhancer. Mice lacking EKLF die prior to birth by E16 with a phenotype that closely resembles the human disease thalassaemia. Thalassaemia is due to mutations in the α or β-globin genes, leading to globin chain imbalance, red cell destruction and ineffective erythropoiesis. However, restoration of expression of γ-globin (a β-like gene) failed to prevent embryonic lethality in EKLF knockout mice and suggested that additional target genes were critical to erythropoiesis. This thesis describes investigation into the transcriptional network of EKLF and an in depth analysis of previously uncharacterised phenotypes present in the EKLF knockout mouse. I have identified a suite of target genes for EKLF that include critical components of the cells cycle. I have also tested the hypothesis that EKLF is able to function in vivo as a tumour suppressor gene. Additionally, I report a role for EKLF in the determination of cell fate within the haematopoietic system and describe the development of a new approach to globally understanding erythroid transcription factor function. A previously performed microarray transcriptional profiling study provided a set of potential target genes for EKLF. I have expanded on this study by identifying that the cell cycle genes p18INK4c, and E2f2 are direct transcriptional targets of EKLF, where binding of EKLF occurs at the promoter and a novel intronic enhancer region, respectively. I have also described a previously undiscovered cell cycle phenotype of aberrant entry into S-phase in EKLF -/- erythroid cells that is directly related to abrogated expression of E2f2. The Kruppel-like factor family of genes have been implicated as players in the tumour process. By constructing a model for the loss of EKLF within HSCs in vivo, I have tested whether EKLF is functional as a tumour suppressor. The loss of EKLF in vivo was found to be insufficient to generate erythroleukaemia, however did result in erythroid hyperplasia, extramedullary haematopoieis and a mild macrocytic anaemia. In addition to regulation of erythropoiesis, EKLF performs a critical role in the lineage choice for a megakaryocyte-erythroid progenitor (MEP) between the megakaryocytic and erythroid lineages. This thesis describes that in the absence of EKLF, MEPs fail to commit properly to either lineage and proceed along a promiscuous pathway sharing the hallmarks of both megakaryocytes and erythroid cells. A detailed molecular mechanism for this phenotype remains undetermined, but is likely to involve interactions with the megakaryocyte transcription factor Fli1 and other members of the Kruppel-like factor family, such as BKLF (KLF3). While the transcriptional mechanisms that drive erythropoiesis have been slowly discovered, the development of chromatin immunoprecipitation (ChIP) assays and next generation DNA sequencing technology has presented the potential to rapidly enhance the progression of these studies. In this thesis I describe the development of ChIP-seq using Applied Biosystems SOLiD technology, an approach to rapidly identify binding sites for erythroid transcription factors in an unbiased genome wide approach. The work described in this thesis has expanded the transcriptional network of EKLF to include critical components of the cell cycle and has suggested many additional target genes from ChIP-seq requiring validation. As one of the major transcription factor players during erythropoiesis, EKLF performs many critical functions that include the regulation of the cell cycle, lineage selection and erythroid development. I suggest that current and future studies of EKLF function will influence our understanding of erythropoiesis and refine our understanding of human conditions such as thalassaemia and erythroleukaemia.
9

Role of histone deacetylases in gene expression and RNA splicing

Khan, Dilshad Hussain 23 April 2013 (has links)
Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA-directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions.
10

Role of histone deacetylases in gene expression and RNA splicing

Khan, Dilshad Hussain 23 April 2013 (has links)
Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA-directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions.

Page generated in 0.1447 seconds