• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidation and Improvement of Algorithms for Mass Spectrometry Isotope Trace Detection

Smith, Robert Anthony 01 May 2014 (has links) (PDF)
Mass spectrometry facilitates cutting edge advancements in many fields. Although instrumentation has advanced dramatically in the last 100 years, data processing algorithms have not kept pace. Without sensitive and accurate signal segmentation algorithms, the utility of mass spectrometry is limited. In this dissertation, we provide an overview and analysis of mass spectrometry data processing. A tutorial to ease the learning curve for those outside the field is provided. We draw attention to the lack of critical evaluation in the field and describe the resulting effects, including a glut of algorithm contributions of questionable novel contribution. To facilitate increased critical evaluation, we show the importance of a modular paradigm for mass spectrometry data processing through highlighting the impact of data processing algorithm choice upon experimental results. Our novel controlled vocabulary is presented with the aim of facilitating literature reviews for comparisons. We propose a novel nomenclature and mathematical characterization of mass spectrometry data. We present several novel algorithms for mass spectrometry data segmentation that outperform existing standard approaches. We end with an overview of future research which will continue to advance the state of the art in mass spectrometry data processing.

Page generated in 0.1249 seconds