• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 518
  • 210
  • 94
  • 65
  • 33
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 15
  • 14
  • 13
  • 7
  • Tagged with
  • 1203
  • 215
  • 165
  • 161
  • 152
  • 144
  • 142
  • 136
  • 135
  • 105
  • 102
  • 101
  • 96
  • 92
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

COMPARATIVE MAPPING: HOMOLOGY WITHIN THE ORDER PERISSODACTYLA OF FOUR GENES LOCATED ON EQUUS CABALLUS CHROMOSOME 20

Mains, Christine Marie 01 January 2004 (has links)
Since changes in chromosome morphology contribute to the knowledge of evolution as well as to chromosome dynamics, this study looks specifically at one chromosome compared in twelve different species of Perissodactyls: Equus caballus (ECA), E. przewalskii (EPR), Equus africanus somaliensis (EAF), E. asinus (EAS), E. hemionus onager (EHO), E. h. kulan (EHK), E. h. kiang (EKI), E. zebra hartmannae (EZH), E. grevyi (EGR), E. burchelli (EBU), Tapirus indicus (TIN), and Rhinoceros unicornis (RUN). While chromosome morphology studies have been done in some of the extant equids, none have followed the evolution of this chromosome, homologous to Equus caballus chromosome 20 (ECA20), which contains the major histocompatibility complex (MHC). The gene order on the chromosome arm homologous to human chromosome six in most Equidae is reversed with respect to the centromere in comparison to humans. Multicolor fluorescence in situ hybridization was used to show that four probes from ECA20 hybridized to ECA20 (control), SWA5, EAS8, EHO16, EHK14, EKI16, EZH10, EGR11, EBU13, TIN4, and one of RUN12, 14, 15, or 22. The order for the four genes in the horses, zebras, and rhinoceros were as follows: cen-EDN1-MHC-ITPR3-MUT. Hybridization to the ass and tapir chromosomes displayed a possible neocentromere formation. It is apparent the chromosome has gone through several morphological changes while undergoing speciation in the Equidae, yet the overall gene order is conserved.
372

Mapping studies of the centromeric region of the human Y chromosome

Williams, Gareth Owen January 1998 (has links)
Mapping studies of the centromeric region of the human Y chromosome Construction of a map of a human centromeric region is very important in order to understand the organisation of this essential part of the chromosome. A YAC contig map has been assembled of the pericentric 10 Mb of the human Y chromosome, giving coverage of Yp from the large X-Y homologous region through to the alphoid satellite of the centromere, and from the alphoid DNA to the proximal unique sequences on Yq. The Yp map has one remaining gap between TSPY1 and the AMELY region, while two gaps separate the satellite region on Yq from the other two contigs. After constructing the map, the known genes were localised to the region. One Yq gene, DFFRY, was discounted as a potential anti-Turner syndrome gene by analysis of rearranged Y chromosomes. Detection of a block of duplicated sequence on Yp led to the confirmation of the existence of an inversion polymorphism, which was then found to be correlated with a major subclass of sex-reversed individuals, who have X-Y chromosomal breakpoints within the inverted region. These results not only give a far more extensive and detailed map of this region than before, but also show that understanding the organisation of the region has important consequences for a number of genetic disorders.
373

Molecular biology of X-chromosome disease

Chen, Zheng-Yi January 1992 (has links)
Genomic clones were isolated and characterized using the human monoamine oxidase A (MAOA) cDNA to screen a phage library, constructed from a human 4X cell line (48, XXXX). The genomic contig derived from overlapping phage clones showed that the size of the MAOA gene is over 80 kb. Exon-containing fragments from these phage clones were subcloned and sequenced. The data from this showed that the MAOA gene consists of 15 exons. A YAC (yeast artificial chromosome) isolated using the MAOA cDNA was characterized. This YAC was found to contain both the MAOA and the MAOB genes. Using PFGE (pulsed-field gel electrophoresis) to investigate the YAC, it was found that the MAOA and the MAOB genes are located within 50 kb and adjacent to each other. The two genes are localized in a 3'-to-3' fashion, suggesting their expression may be regulated independently. The analysis of the homology shown by the two genes clearly demonstrated that they were derived from duplication of a common ancestral gene. A CpG island was discovered to be associated with the 5' end of both genes. A restriction map of -2.5 Mb of genomic DMA around the MAO genes was generated by PFGE. Long-range mapping defined the physical relationship between the marker L1.28 and the MAO genes as L1.28_MAOA_MAOB. A number of genetic diseases have been linked to the Xp11.3 region. Strong linkage was known to exist between the Norrie disease locus and L1.28. Studies showed that some of the Norrie patients have deletions encompassing the region which contains L1.28 as well as the MAO genes. Another YAC isolated by using L1.28 as the probe was also characterized. A phage library was constructed from the L1.28 YAC and the end clones were isolated. Studies on some of the Norrie deletion patients showed that the proximal end clone of the YAC was retained in one of the deletion patients. Previous studies had shown that the Norrie disease locus was also localized proximal to the 5' end of the MAOB gene. The combined information placed the disease locus to an interval of 240 kb within the YAC. More phage clones were characterized in order to define further the region for the Norrie locus which was finally localized within 160 kb. A YAC fragment of 160 kb was isolated and used to screen two human retinal cDNA libraries. Among the cDNAs isolated, one group was found to be deleted in some of the Norrie patients previously without any known deletion, which established their candidacy as the transcripts of the Norrie disease locus. Further characterization of the candidate gene showed that it is conserved across species. The expression of the gene was detected in various tissues. The homology shared between the NDP gene and some of the growth factor binding proteins suggests its role in neural cell proliferation and differentiation.
374

Analysis of two point mutations in the androgen receptor gene of patients with complete androgen resistance

Bordet, Sylvie January 1992 (has links)
Two previously identified sequence alterations in the androgen receptor gene of patients with complete androgen resistance are studied to prove their pathogenicity. Family studies confirm that the mutation segregates with the phenotype and that the mothers are heterozygous carriers. In one family a sibling of the patient is identified as a heterozygous carrier. Mutant cDNAs encoding the mutant receptors are constructed and expressed in COS-1 cells. The resulting mutant receptors show a decreased apparent equilibrium constant for androgens, faster dissociation rates and impaired transactivation. Further studies reveal that both mutant receptors were either inactivated or destroyed in the presence of hormone, while the normal receptor is stabilized and up-regulated by incubation with ligand. These results prove that the sequence alterations thus identified are pathogenic and illustrate a dual mechanism of pathogenicity: an affinity defect combined with a loss of binding activity in the presence of hormone, resulting in receptors incapable of supporting normal male sexual development.
375

Characterization of four point mutations in the androgen receptor gene of subjects with varying degrees of androgen insensitivity syndrome

Shkolny, Dana January 1995 (has links)
This work proves the pathogenicity of four substitution mutations in the androgen-binding domain of the human androgen receptor (hAR) gene of four subjects with varying degrees of androgen insensitivity syndrome (AIS): complete (CAIS), partial (PAIS), or mild (MAIS). Of three unrelated CAIS subjects, two have Arg830Leu, the third has Arg830Gln. Their genital skin fibroblasts (GSF) have negligible androgen binding, but in overexpressing transfectants, the mutant androgen-binding activities have increased dissociation rates and decreased affinity for androgen. Owing to the instability of AR-androgen complexes, both mutants fail to transactivate a reporter gene. Glu771Ala and Arg870Gly caused PAIS and MAIS, respectively. Their normal levels of GSF androgen-binding activity have normal androgen affinity but increased dissociation rates. In transfectants, rates of dissociation resemble those in GSF, but the androgen affinities are questionably abnormal. Instability of Glu771Ala and Arg870Gly AR-androgen complexes caused subnormal transactivation of a reporter gene.
376

Genetic information and insurance : a contextual analysis of legal and regulatory means of promoting just distributions

Lemmens, Trudo January 2003 (has links)
This thesis analyzes the rationale, appropriateness and value of the available legal and regulatory means to deal with genetic discrimination in the context of insurance. Insurance is used as a paradigm case for discussing the legal means to address the concerns related to the impact of new medical technologies. A new framework is proposed for evaluating the potential impact of such new technologies on people's ability to participate fully in social life and to have access to important social goods without unfair discrimination based on certain inherited traits. / A "thick" contextual method is used, which involves a detailed description of the medical, social, and legal context of the debate. The approach is based on Michael Walzer's theory of justice, which posits that in assessing the fairness of the distribution of a particular good, one must take into account the nature of the good as determined by the specific socio-historical context in which it obtains its shared meaning. Walzer's theory is used in the thesis to critically analyze the regulatory and legislative means introduced in several countries to curb genetic discrimination. It is further argued that Walzer's contextual analysis resembles the approach taken by the Canadian Supreme Court in the context of anti-discrimination law. Canadian human rights law is analyzed in detail to describe how genetic discrimination could be dealt with under the current provisions and how human rights law can be used to create conditions of substantive equality. The thesis concludes with an analysis of various legal and regulatory options to deal with genetic discrimination and its impact on human rights in the Canadian context. The establishment of a regulatory body is proposed, with the mandate to review the appropriateness of the use of new tests in the context of insurance. I argue that this review process, and the contextual analysis that should be involved in this process, would constitute a useful step towards creating conditions for substantive equality, not only for those who are genetically disabled, but for all those who are affected by real or perceived disabling conditions and stigmatizing traits.
377

DNA sequences differentially represented in males and females of the oriental fruit fly Bactrocera dorsalis

Lai, Janice Su Yin 12 1900 (has links)
The objective of this dissertation is the isolation of DNA sequences that are differentially represented in males and females of the Oriental fruit fly Bactrocera dorsalis, specifically by initiating a molecular characterization of Y chromosome sequences in this species. Cytological observations have established the presence of a diminutive Y chromosome in B. dorsalis males. To isolate DNA sequences from the Y chromosome, a special method of genomic DNA isolation known as Representational Difference Analysis (RDA) was utilized to obtain DNA sequences unique to the B. dorsalis male genome. Genomic DNA from B. dorsalis males served as the "tester" DNA and female genomic DNA as the "driver" DNA. Six distinct RDA products were obtained following two complete rounds of DNA hybridization and difference enrichment via the Polymerase Chain Reaction (PCR). One ofthese products (RDA product 1) was used to isolate a genomic DNA clone (3.1a) from a B. dorsalis male genomic DNA minilibrary. This sequence shows similarity to the reverse transcriptase of R1 retrotransposable elements. The presence of R1 elements in the Tephritid insects has heretofore been undescribed, although these elements have been previously described in the genomes of other Dipteran species. Oligonucleotide primers for PCR were designed for the 3.1a clone. These primers consistently produce different amplification patterns in PCRs ofgenomic DNA from B. dorsalis males vs. females. Amplification using male genomic DNA produces 325 bp and 2.6 kb products while only a 2.6 kb product is obtained from female DNA. The amplification products obtained with these primers are also produced in PCRs of genomic DNA from B. dorsalis embryos and third instar larvae, suggesting the ability of this method to infer sex at pre-adult stages ofthe B. dorsalis life cycle. Similar amplification products have also been obtained in other Bactrocera species. Both the 325 bp male PCR product and the 2.6 kb products have regions of sequence similarity to R1 elements. The 2.6 kb product contains a putative 1.7 kb open reading frame (ORF) encoding 583 amino acids. Three amino acid motifs found in Drosophila R1 element reverse transcriptases are present in comparable locations within the hypothetical ORF product. Both of these sequences are also repetitively represented in the B. dorsalis male and female genomes. However, the 325 bp male product produces some bands that are male specific when used as a probe for Southern blots of B. dorsalis male and female genomic DNA. The amplification pattern produced by the 3.1a primers is consistent with what would be expected if the 2.6 kb and 325 bp PCR products originated from the B. dorsalis X and Y chromosomes, respectively. Thus, the cloned male-specific sequence recovered here is potentially useful both as a gateway into the relatively uncharacterized B. dorsalis Y chromosome and as a tool for the characterization of other aspects of the B. dorsalis genome.
378

The early control region of temperate coliphage 186 : sequence and transcription studies / Bill Kalionis

Kalionis, Bill January 1985 (has links)
Includes bibliography / 154, [94] leaves, [12] leaves of plates : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1986
379

The effects of selenomethionine and wheat biofortified with selenium on DNA damage and cell death in human lymphocytes.

Wu, Jing January 2010 (has links)
Selenium (Se) is an essential micronutrient, being a component of more than twenty seleno-proteins in humans. Previous studies suggested that increased intake of Se may reduce the risk of degenerative diseases including cancer; however, excessive intake can be toxic. Wheat is one of the major dietary sources of Se in humans, mainly in the form of L-selenomethionine (Se-met) but the impact of this source of Se on human health at the genome level was previously unexplored. This PhD project aimed to (a) determine the safe dose-range and bio-efficacy of Se-met in vitro; (b) identify the optimal concentration of Se-met for reduction of genome damage in vitro; (c) investigate the optimal concentration of Se-met for improving resistance to gamma radiation or hydrogen peroxide induced genome damage in vitro; d) determine the bioavailability and bioefficacy of Se in vivo, in the form of either Semet or wheat biofortified with Se; e) identify the nutrients and food groups that are correlated with Se intake/status and f) identify the nutrients, food groups and plasma mineral concentrations that are correlated to baseline lymphocyte DNA damage. The in vitro study was performed on the peripheral blood lymphocytes isolated from six males and cultured with media supplemented with Se-met in a series of Se concentrations from 3 to 3850 μg Se/l while keeping the total methionine (i.e. Se-met + L-methionine) concentration constant. Baseline genome stability of lymphocytes and the extent of DNA damage induced by 1.5 Gy γ-ray or 7.5 μM hydrogen peroxide (H₂O₂) were investigated using the Cytokinesis-block Micronucleus Cytome (CBMNCyt) assay and the alkaline Comet assay with and without glycosylase (Fpg or Endo III) treatment after 9 days of culture. Results showed that high Se concentrations (≥1880 μg Se/l) caused strong inhibition of cell division, extensive DNA damage and increased cell death indicating cytotoxicity and genotoxicity. Baseline frequency of nucleoplasmic bridges (NPBs) and nuclear buds (NBud) declined significantly as Se concentration increased from 3 μg Se/l to 430 μg Se/l (P trend = 0.03 and 0.008, respectively); however, a significant trend of increase in Comet DNA damage was also observed (P trend <0.05) in lymphocytes. Selenium concentration (≤ 430 μg Se/l) had no significant effect on baseline frequency of micronuclei (MN) or DNA oxidation and had no protective effect against γ-ray-induced or H₂O₂-induced genome damage in lymphocytes. A randomised double-blind placebo-controlled intervention trial was conducted on healthy South Australian males (n = 62, age (mean ± SD) 56 ± 7.0 years) with Se dosage increased every 8 weeks for a total duration of 24 weeks. This study compared the bioavailability, by using plasma Se concentration as the biomarker, and bioefficacy of Se, by using platelet glutathione peroxidase (GPx) activity and lymphocyte DNA damage as biomarkers, from wheat process-fortified with Se-met (PROFORT) and high-Se wheat biofortified with Se (BIOFORT) compared to non-fortified normal (CONTROL) wheat. It was found that increased Se intake from BIOFORT wheat increased plasma Se concentration effectively in a dose-response manner from a baseline of 122 μg/l up to 190 μg/l (P<0.001). Increased Se intake from PROFORT wheat also increased plasma Se with a plateau at 140 μg/l, being therefore less effective than BIOFORT wheat (P<0.001). There was no significant change in Se status in the CONTROL group. Improved plasma Se concentrations had no effect on platelet GPx activity or lymphocyte DNA damage in either of the intervention groups. Results from the food frequency questionnaire (FFQ) survey (n = 173) and plasma Se concentration survey (n = 179) suggested that the study population screened for participation in the in vivo trial described above had a mean plasma Se concentration (± SD) of 102 (± 12) μg/l and a mean (± SD) estimated Se intake of 165 (± 68) μg/d. This is a higher estimated Se intake than found in previous Australian studies. The major dietary sources of Se were found to be bread/cereals, fish/seafood and meat. However, increased intake of nuts/seeds, which are rich in Se, may have undesirable effects on lymphocyte DNA oxidation in this Se-replete population. In conclusion, the in vitro studies suggest that (1) Se-met at higher concentrations at greater or equal to 1880 μg Se/l is cytotoxic; (2) Se-met may improve specific genome stability biomarkers such as nucleoplasmic bridge and nuclear bud at concentrations up to 430 μg Se/l, but further studies are needed to verify this effect. The in vivo studies in older men showed that Se from BIOFORT wheat is more effective in raising plasma Se concentration than Se from wheat process-fortified by the addition of Se-met, when both wheat products were subjected to strong heat. However, the platelet GPx activity and lymphocyte DNA damage appeared not to be modified by improved Se status. This work contains two publications: 1) "The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes as measured by the cytokinesis-block micronucleus cytome assay". Mutagenesis 2009 May;24(3):225-32. 2) "Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress or immune function in Australian males" Environmental Molecular Mutagenesis. 2009 July; 50 (6):489-501 The latter one was not able to be published in a journal of higher impact factor due to part of the data had been published elsewhere. Both articles are attached in Appendix. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1523459 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2010
380

Investigating chromosome pairing in bread wheat using ASYNAPSIS I.

Boden, Scott Andrew January 2008 (has links)
Pairing and synapsis of homologous chromosomes are required for normal chromosome segregation and the exchange of genetic material during meiosis. Pairing is defined as the recognition and alignment of chromosomes that occurs either pre-meiotically or during early prophase I to ensure that associations via synapsis and recombination occur only between homologues. Synapsis is the intimate juxtaposition of homologous chromosomes that is complete at pachytene following formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is an essential component of the SC that localises along chromosome axes during prophase I and promotes homologous chromosome interactions. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. In this study, we have characterised the bread wheat homologue of HOP1, TaASY1, and its encoded protein. The full length cDNA and genomic DNA clones of TaASY1 have been isolated, sequenced and characterised. TaASY1 is located on chromosome group 5 and the open reading frame displays significant similarity to OsPAIR2 (84%) and AtASY1 (63%). In addition to OsPAIR2 and AtASY1, the deduced amino acid sequence also displays sequence similarity to ScHOP1, with all four proteins containing a HORMA domain. Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occurs. Antibodies specific to TaASY1 were used in immuno-fluorescence microscopy and immuno-gold transmission electron microscopy to investigate the localisation of TaASY1 in meiotic cells. Immuno-fluorescence analysis initially detected ASY1 in pollen mother cells (PMCs) during meiotic interphase as foci randomly distributed over the chromatin. The ASY1 signal became increasingly continuous during leptotene, reflecting the changes occurring in chromosome morphology. Throughout zygotene, the signal became progressively more continuous, localising along the entire length of the axial elements as chromosomes synapsed. This signal appeared to persist until pachytene, before disappearing from the chromatin as the SC disassociated through late pachytene and early diplotene. The immuno-gold based electron microscopy displayed that TaASY1 localises to chromatin that is associated with both axial elements before SC formation as well as chromatin of lateral elements within formed SCs. Analysis of RNAi Taasy1 mutants was performed to further define the role of ASY1 in bread wheat meiosis. ASY1 localisation was disrupted in these mutants, with a diffuse and non-continuous signal observed through leptotene and zygotene. Feulgen staining of meiotic chromosomes displayed reduced synapsis during prophase I, as well as multivalents at metaphase I and abnormal chromosome segregation during anaphase I. These observations are consistent with the presence of homoeologous chromosome interactions. TaASY1 expression and localisation was also investigated in the bread wheat pairing mutant, ph1b. Quantitative real-time PCR (Q-PCR) revealed that TaASY1 is significantly up-regulated in ph1b, with greater then 20-fold expression compared to wild-type Chinese Spring, while maintaining the same pattern of expression as wild-type through progressive stages of meiosis. ASY1 localisation was significantly disrupted in ph1b, with irregular loading on axial elements during mid to late zygotene, indicative of abnormal chromatin remodelling and multiple axial element associations that have previously been reported in ph1b. Taken together, these results indicate that TaASY1 is essential for promoting homologous chromosome interactions during meiosis, and that impairment of ASY1 function in bread wheat meiosis results in reduced restriction of chromosome associations to homologues. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1340087 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008

Page generated in 0.0955 seconds