1 |
Projeto conceitual de sistemas de produção de hidrogênio a partir de energia nuclear de temperatura muito altaGONZÁLEZ RODRÍGUEZ, Daniel 24 July 2017 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-08-22T20:33:21Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Daniel González Rodríguez.pdf: 4087737 bytes, checksum: d303274dc9628583eb24d7fca3b6376b (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-29T21:30:21Z (GMT) No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Daniel González Rodríguez.pdf: 4087737 bytes, checksum: d303274dc9628583eb24d7fca3b6376b (MD5) / Made available in DSpace on 2018-08-29T21:30:21Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
TESE Daniel González Rodríguez.pdf: 4087737 bytes, checksum: d303274dc9628583eb24d7fca3b6376b (MD5)
Previous issue date: 2017-07-24 / FACEPE / A economia do hidrogênio é um dos conceitos mais promissores para o futuro energético. Nesse cenário, o petróleo é substituído pelo hidrogênio como vetor energético. Este hidrogénio, diferente do petróleo, deve ser produzido em volumes não fornecidos pelos métodos empregados atualmente. Neste trabalho são apresentados dois métodos de produção de hidrogênio de alta temperatura acoplados a um sistema nuclear avançado. Um novo design de um sistema dirigido por acelerador do tipo leito de bolas chamado TADSEA é escolhido devido ás vantagens que tem em temas de transmutação e segurança. Dois dos métodos de produção de hidrogênio mais promissores foram considerados: a eletrólise de alta temperatura que tem maiores níveis de eficiência e permite a cogeração de gás de sínteses e o ciclo de dissociação termoquímica da água iodo-enxofre que pode ser empregado em cogeração de energia elétrica. Para o projeto conceitual do processo de eletrolise de alta temperatura foi desenvolvido um modelo detalhado dinâmica de fluidos computacional para analisar a célula eletrolítica de óxido sólido que tem uma enorme influência na eficiência do processo. Um modelo detalhado do processo de eletrolise de alta temperatura acoplado ao TADSEA através de um ciclo de gás Brayton foi desenvolvido usando um software de simulação de processo químico: Aspen HYSYS®. Foi obtida uma eficiência do ciclo de conversão de energia de 38,29%. O tamanho da pilha de células que podem ser energizadas pelo TADSEA foi calculado ficando com 770.833 células, operando numa densidade de corrente de 0,6135 A/cm² numa voltagem de 1,32 V. Obtiveram-se a influência dos principais parâmetros operacionais como a voltagem de operação do eletrolisador e a vazão de agua na entrada do sistema na eficiência do modelo. O modelo com as condições de operação otimizadas o modelo proposto produz 0,1627 kg/s hidrogênio resultando numa eficiência global do processo de 34,51%, valor na faixa dos resultados reportados por outros autores. Foi também desenvolvido um projeto conceitual do ciclo de dissociação termoquímica da água iodo-enxofre para determinar a eficiência global do processo e fazer algumas otimizações dos parâmetros de operação da secção inicial do processo, a estabilidade térmica das secções de decomposição dos ácidos e a vazão de agua que pode ser processada pelo modelo. Foi obtida uma eficiência do ciclo de conversão de energia empregado para este sistema de 53,27% resultando numa produção de hidrogênio de 5,665e-2 kg/s. A eficiência global do processo foi calculada fazendo um balanço de energia resultando em 22,56 %. Os valores de eficiência, taxa de produção de hidrogênio e consumo de energia dos modelos propostos estão nos valores considerados como aceitáveis no conceito de economia de hidrogênio, sendo também compatíveis com os parâmetros de saída do TADSEA. O projeto para a eletrolise de alta temperatura apresenta maiores valores de eficiência mais tem a desvantagem de não apresentar a possibilidade de cogeração de energia elétrica. O modelo para o processo I-S a pesar de ter valores de eficiência inferiores, apresenta a vantagem de produção de energia elétrica e calor residual em cogeração. / The hydrogen economy is one of the most promising concepts for the energy future. In this scenario, oil is replaced by hydrogen as an energy carrier. This hydrogen, rather than oil, must be produced in volumes not provided by the currently employed methods. In this work two high temperature hydrogen production methods coupled to an advanced nuclear system are presented. A new design of a pebbled-bed accelerator nuclear driven system called TADSEA is chosen because of the advantages it has in matters of transmutation and safety. Two of the most promising hydrogen production methods have been considered: high-temperature electrolysis which has higher efficiency levels and allows synthesis gas cogeneration and the iodine-sulfur thermochemical water cycle that can be used in electricity cogeneration. For the conceptual design of the high temperature electrolysis process a detailed computational fluid dynamics model was developed to analyze the solid oxide electrolytic cell that has a huge influence on the process efficiency. A detailed model of the high temperature electrolysis process coupled to TADSEA through a Brayton gas cycle was developed using chemical process simulation software: Aspen HYSYS®. An energy conversion cycle efficiency of 38.29% was obtained. The size of the cell stack that can be energized by the TADSEA was calculated in 770,833 cells, operating at a current density of 0.6135 A/cm² with a voltage of 1.32 V. The influence of the main operating parameters such as electrolyzer voltage and the system inlet water mass flow in the efficiency of the model. The model with optimized operating conditions produces 0.1627 kg/s of hydrogen, resulting in an overall process efficiency of 34.51%, a value in the range of results reported by other authors. A conceptual design of the iodine-sulfur thermochemical water splitting cycle was also developed to determine the overall efficiency of the process and to perform some studies of the operating parameters of the initial section of the process, the thermal stability of the decomposition sections and the amount of water that can be processed by the proposed model. An efficiency of the energy conversion cycle employed for this system of 53.27% was obtained resulting in a hydrogen production of 5,665e-2 kg/s. The overall efficiency of the process was calculated performing an energy balance resulting in 22.56%. The values of efficiency, hydrogen production rate and energy consumption of the proposed models are in the values considered acceptable in the hydrogen economy concept, being also compatible with the TADSEA design parameters. The design for high temperature electrolysis process has higher efficiency values but has the disadvantage of not presenting the possibility of cogeneration of electric energy. The model for the I-S process, despite having lower efficiency values, has the advantage of producing electric energy and residual heat in cogeneration.
|
Page generated in 0.0427 seconds