• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supported platinum and iridium catalysts for the selective hydrogenation of cinnamaldehyde

Theodoulou, Louise January 2001 (has links)
No description available.
2

Charakterizace samoorganizujících se molekul a jejich využití v kapilární elektroforéze / Characterization of self-assembling molecules and their application in capillary electrophoresis

Hodek, Ondřej January 2015 (has links)
This diploma thesis deals with application of newly synthesized α-cyclodextrins derivatives, 2I -O-cinnamyl-α-cyclodextrin and 3I -O-cinnamyl-α-cyclodextrin, in capillary electrophoresis. Their unique feature lies in formation of cyclodextrin aggregates in an aqueous solution by inclusion of phenyl moiety of one molecule into cavity of another one. The influence of addition of 2I -O-cinnamyl-α-CD and 3I -O-cinnamyl-α-CD to background electrolyte (BGE) and its impact on effective mobilities of eighteen selected analytes were tested. Nine analytes were measured in the form of cations (aniline, antipyrine, L-histidine, D,L-tyrosine, D,L- phenylalanine, N-(1-naphtyl)ethylenediamine, 4-nitroaniline, p-aminoaceto-phenon and tyramine) and nine in the form of anions (N-acetyl-D,L-phenylalanine, N-acetyl-D,L-tryptophan, N-benzoyl-D,L-phenylalanine, N-boc-D,L-tryptophan, N-FMOC-D,L-valine, N-FMOC-alanine, N-FMOC-D,L-leucine, D,L-3-phenyllactic acid and (R)-(-)-mandelic acid). Electrophoretic mobilities of cations were tested in BGE at pH 2.2 and anions at pH 8.0. The measurements were conducted at 25 and 50 řC. At the beginning the buffer containing 2.5 mM TRIS was adjusted with phosphoric acid to pH 2.2. However, it was found, that phosphate anions might enter cyclodextrin cavity and disable potential...
3

Improving barley for biofuel production : efficient transformation for lignin manipulation

Maluk, Marta January 2014 (has links)
Cost effective production of biofuel from plant biomass (second generation biofuels) is currently a key challenge. To achieve this, accessibility of plant cell wall polysaccharides to chemical, enzymatic and microbial digestion could be improved by altering lignin structure and composition or by reducing lignin content, as lignin is one cell wall component that has already been shown to contribute to biomass recalcitrance. Therefore, this thesis reports the genetic manipulation of lignin biosynthesis through down-regulation of cinnamyl alcohol dehydrogenase (CAD) genes in barley (Hordeum vulgare L.). Barley has been chosen as the target plant for lignin manipulation for a few reasons: it is a major cereal crop that produces large amounts of lignocellulosic plant biomass that can potentially be used as animal feed or to produce second generation biofuels and also because it is a model grass for other bioenergy crops. CAD, as the final enzyme in the lignin pathway, is a perfect target for lignin manipulation. Characterised CAD mutants and transgenics have shown that down-regulation of CAD improves digestibility and does not influence plant growth and fertility. Due to the difficulty and complexity of transformation of monocot species, there are only a few reports describing down-regulation of CAD in monocots, and none in barley. Here, in this thesis, lignin was altered by down-regulating CAD genes using an RNAi construct with part of the HvCAD2 gene, the gene which has the highest expression level of all CAD genes. Transgenic barley plants showed reduced enzyme activity in the T0 generation (31% compared to EV plants) and enzyme activity was reduced even more in the T1 (to 3%) and T2 (to 2%) generations. The HvCAD2 RNAi barley lines had similar or slightly reduced Klason total lignin contents relative to control plants, but lignin structure and composition were altered. The RNAi plants had lower thioacidolysis yields, S/G ratio was reduced (1.59 in the empty vector controls versus 0.96–1.21 in the transgenic barley plants), the relative frequency of S units was reduced by 11–20%, the proportion of G units was increased by 17–32%, there was increased sinapaldehyde accumulation in lignin and ferulic acid abundance was reduced relative to control plants. Analysed transgenic barley plants had an orange stem phenotype. Growth season and conditions hugely affected the intensity of the phenotype. Because lignin plays a major role in culm strength and pathogen resistance, the influence of down-regulation of CAD on these features was characterised. The changed physicochemical nature of cell walls in HvCAD2 RNAi lines does not decrease the strength of the straw and does not decrease the resistance to the biotrophic Blumeria graminis and to the hemibiotrophic Rhynchosporium commune pathogens. The modified cell walls in the HvCAD2 RNAi lines had moderately improved sugar release for biofuel production. This study proves that it is possible to down-regulate CAD in cereal crops in order to change lignin structure and composition in plants without a negative impact on plant growth, fertility or pathogen resistance.
4

Studies on lignocellulose supramolecular structures and deconstruction properties in lignin-altered rice mutants / リグニンを改変したイネ変異体におけるリグノセルロースの超分子構造と分解特性に関する研究

Andri, Fadillah Martin 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22502号 / 農博第2406号 / 新制||農||1077(附属図書館) / 学位論文||R2||N5282(農学部図書室) / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 梅澤 俊明, 教授 矢﨑 一史, 教授 渡邊 隆司 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
5

Syntéza derivátů beta-cyklodextrinu pro medicinální aplikace / Synthesis of beta-cyclodextrin derivatives for medicinal applications

Popr, Martin January 2010 (has links)
Synthesis of monosubstituted β-cyclodextrin derivatives for medicinal applications Abstract This thesis is focused on preparation of a set of β-cyclodextrin derivatives with potential use as scaffolds for a construction of novel MRI contrast agents. Firstly, the skeleton of native β-CD was selectively persubstituted at possitions 6 and equipped with azide functions. Per-6-azido-β-CD was then monosubstituted on secondary face of the macrocycle. (E)-cinnamylbromide and propargylbromide were chosen as suitable reagents. The monosubstitution reaction afforded two types of regioisomers, substituted at position 2I -O- or 3I -O-. These regioisomers were sucessfully separated via preparative column chromatography after peracetylation of all free hydroxyl groups. 2I -O-, 3I -O-formylmethyl- and 3I -O- karboxymethyl- analogues were prepared by oxidative transformation of cinnamyl group. Finally the usability of the formylmethyl- derivative for covalent binding with suitable substrate via reductive amination was confirmed. Keywords: cyclodextrins, monosubstitution, cinnamyl, propargyl, formylmethyl, carboxymethyl, reductive amination, MRI, contrast agents
6

Etude de la voie de biosynthese des monolignols chez brachypodium distachyon / Identification of genes involved in the biosynthesis of monolignols in Brachypodium distachyon

Bouvier d'yvoire, Madeleine 19 December 2011 (has links)
La récente définition de Brachypodium distachyon comme modèle des graminées en fait un organisme de choix pour l’étude de leur paroi cellulaire, en particulier dans le cadre de leur utilisation comme matière première renouvelable pour le bioéthanol de seconde génération. Les lignines, dont les trois unités (H, G et S) proviennent de la polymérisation des monolignols, sont associées aux acides hydroxycinnamiques dans la paroi des céréales et représentent l’obstacle majeur à l’exploitation industrielle de la biomasse lignocellulosique. L’acquisition de connaissances sur les mécanismes dirigeant leur mise en place et leur organisation permettrait d’identifier des facteurs modulant les rendements de production qui y sont associés. Quatre familles de gènes ont été étudiées et l’implication dans la voie de biosynthèse des monolignols de trois gènes a été montrée : BdF5H2 possède une activité férulate-5-hydroxylase permettant la synthèse des précurseurs des unités S des lignines, BdCOMT3 est l’isoforme principale des acide cafféique O-Méthyltransférases et sa perte partielle de fonction cause une diminution de la quantité de lignine, la modification du rapport S/G et une baisse de quantité d’acide p-coumarique dans deux lignées mutantes indépendantes. Enfin, BdCAD1 est l’isoforme principale des alcools cinnamylique déshydrogénases : sa perte de fonction dans deux lignées indépendantes cause la diminution de la quantité globale de lignine et d’acide p-coumarique, une baisse du rapport S/G ainsi que l’accumulation de sinapaldéhyde. Par ailleurs ces deux lignées présentent des rendements de saccharification augmentés de plus d’un quart par rapport au sauvage. / Brachypodium distachyon was recently adopted as an experimental model for grass species. As such, it is used to study grass cell wall, in particular in the context of their use as renewable feedstock for the production of second generation bioethanol. Lignins are polymers of three main units (H, G and S) originating from the polymerization of monolignols, and are linked to hydroxycinnamic acids in grasses. They constitute the main bottleneck to industrial processes targeting lignocellulosic biomass and improving the understanding of the mechanisms directing their structure and deposition could lead to the identification of the factors modulating associated production yields. Four gene families were studied and the involvement of three genes in the monolignols biosynthetic pathway was shown: BdF5H2 displays a ferulate-5-hydroxylase activity enabling the synthesis of the S lignin units, BdCOMT3 is the main caffeic acid O-methyltransferase and its partial loss of function in two independent mutant lines leads to the reduction of lignin content, the modification of the S/G units ratio and a decrease in p-coumaric acid accumulation. BdCAD1 is the main cinnamyl alcohol dehydrogenase isoform: its loss of function in two independent mutant lines results in a decrease in lignin content and of the S/G ratio and the accumulation of sinapaldehyde. Moreover, these two lines display significatively increased saccharification yields.

Page generated in 0.1074 seconds