• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Designs of Circular Microstrip Antennas

Jan, Jen-Yea 15 June 2000 (has links)
The novel designs of circular microstrip antennas have been investigated in this dissertation. In the linearly polarized designs, the study of single-feed dual-frequency circular microstrip antenna with an open-ring slot has been firstly presented. As for the broadband circular microstrip antenna designs, antennas with two open-ring slots, embedded reactive loading by probe feed and microstrip-line feed have been presented. The antenna bandwidth of them can be enhanced about 4% to 6%. In the circularly polarized designs, we have proposed a circularly polarized microstrip antenna with a spur line. By choosing a suitable length of the spur line, CP operation can be obtained. And then, such a design can be applied to a compact circular patch antenna with bent slots. These reduced the antenna size to be 40%~50% of that of the simple case. Finally, we use the ideas of CP operation with elliptic patch and dual-frequency operation with stacked patch to propose a dual-band circularly polarized stacked elliptic microstrip antenna design. The frequency ratio of this design is about 1.39.
2

Three-Layer Electromagnetically Coupled Circular Microstrip Antennas

Revankar, U K 05 1900 (has links)
Presented in this thesis are the following experimental and theoretical investigations carried out on the three-layer electromagnetically coupled (EMC) circular microstrip antennas and their arrays. 1.Three-Layer EMC Circular Microstrip Antenna A three-layer EMC circular microstrip antenna consists of a probe-fed circular microstrip patch having two parasitically excited circular microstrip patches (without ground planes) stacked above it, with air gaps in between successive substrates. In the "inverted" configuration, the parasitic patches are on the lower (nearer to the driven substrate) surface of the substrate. An exhaustive experimental study of the resonant frequencies, input impedance, impedance bandwidth and radiation characteristics of this antenna, has been carried out for both the "normal" and the "inverted" configurations. Based on this experimental study, the design and optimisation of the antenna have been discussed and experimentally tested. In the S-band, it is found that an impedance bandwidth as high as 20 percent coupled with good patterns, high gain and low cross-polarisation levels, have been obtained. 2.Three-Layer EMC Circular Microstrip Antenna Arrays Experimental work has also been carried out on linear arrays of three-layer EMC circular microstrip antennas. The design of a linear array both in the E- and H- planes, of the three-layer microstrip antennas in their "normal" as well as "inverted" configurations, has been discussed and realisation carried out. Impedance bandwidths of the arrays have been experimentally found to be the same as that of the three-layer antenna element High gain and good pattern shape with sidelobes as well as cross-polarisation levels better than -20 dB through a scan angle of 40°, have been realised. A study of the mutual coupling between two-layer as well as three-layer EMC circular patch elements has also been carried out for the useful range of interelement spacings. 3.Theoretical Analysis of Resonant Frequencies of Multilayer Patch Structures Theoretical investigations have been carried out on the resonance properties of single-layer and multilayer EMC patch structures employing the full-wave analysis based on spectral domain immittance approach. The impedance Green's functions for all these structures have been derived from the combination of equivalent transverse transmission lines concept Galerkin's method is employed in the spectral (Hankel) transform domain where two sets of disk current expansions are used for obtaining die characteristic equation. By solving the characteristic equation, the resonant frequencies are obtained for various values of the parameters of the layered antenna.

Page generated in 0.1208 seconds