1 |
Fretting fatigue under variable amplitude loadingHooper, Jeremy January 2003 (has links)
Fretting fatigue is a major concern in the design of engineering components that will be subjected to clamping pressures whilst operating in a vibrational environment. The type of loading environment generated in these applications is generally of a variable amplitude nature. Therefore it is important for engineers to understand how such loading affects the severity of fretting fatigue. In the absence of this understanding, engineering designers are left to apply simplistic plain fatigue life prediction rules, such as Miners linear damage law, to try to estimate the damage generated from a particular loading history. In order to try to establish a baseline for the understanding of fretting fatigue under variable amplitude loading, a structured series of CAL and V AL tests were designed and carried out. The aim of the CAL tests was to characterise the fretting fatigue test rig (designed by the author) so that an experimental foundation could be developed, upon which the fretting fatigue study was based. A structured investigation into the effects on fretting fatigue of applying various specifically designed loading histories was carried out and some very distinct relationships between the applied loading spectra and fretting fatigue life were found. For the application of overloads it was observed that overload size, overload application interval and the number of overloads in each application all had a sizeable effect on the severity of fretting. Two-level, three-level and five-level block loading tests were also investigated and numerous loading history dependent results were obtained. The applicability of Miners law to fretting fatigue was assessed. Combining Miners law with well-defined CAL stress-life results gave reasonable predictions for all of the V AL fretting fatigue tests carried out, with damage summations at failure ranging from 0.64 (non-conservative) to 3.19 (conservative). However, a more detailed investigation into the relationship between fretting fatigue lives and damage summations due to the individual loading levels highlighted that the assumption of linear damage may not be applicable to fretting fatigue, especially during crack initiation and early crack growth. A hypothesis was proposed to explain the fretting fatigue life and Miner damage results observed for the different loading spectra, and reasonable success was obtained for tests where the Miners law proved conservative (in 27 of 36 tests), although the hypothesis was not able to explain the non-conservative results obtained in the other nine tests.
|
2 |
Development of characterisation methods for the components of the polymer electrolyte fuel cellIhonen, Jari January 2003 (has links)
In this work characterisation methods and fuel cell hardwarewere developed for studying the components of the polymerelectrolyte fuel cell (PEFC). Humidifiers and other componentswere tested in order to develop reproducible and reliableexperimental techniques. A set-up for testing larger cells andstacks was developed. A new type of polymer electrolyte membrane fuel cell wasdeveloped for laboratory investigations. Current collectormaterial and gas flow channels can easily be modified in thisconstruction. The electrode potentials can be measured at thegas backing layers, thereby allowing measurement of contactresistances. The use of a reference electrode is alsopossible. Contact resistances were studied in situ as a function oftime, clamping pressure, gas pressure and current density.Ex-situ measurements were used to validate the in-situ contactresistance measurements. The validity and error sources of theapplied in-situ measurement methods with reference electrodesand potential probes were studied using both computersimulations and experiments. An in-house membrane electrode assembly (MEA) productionline was developed. In-house produced MEAs were utilised inboth membrane degradation and mass transport studies. The durability testing of PVDF based membranes membranes wasstudied both by fuel cell experiments and ex-situ testing.Raman spectra were measured for used membranes. A current distribution measurement method was developed. Theeffect of inlet humidification and gas composition at thecathode side was studied. In addition, two different flow fieldgeometries were studied. The results of current distributionmeasurements were used to validate a PEFC model. Methods for characterising gas diffusion layer (GDL)performance by fuel cell testing and ex-situ measurements weredeveloped. The performance of GDL materials was tested withvarying cell compression and cathode humidity. Porosity, poresize distribution and contact angle were determined. Electricalcontact resistance, thermal impedance and gas permeabilitieswere measured at different compression levels. Development work on a stack with stainless steel net wascarried out as well as characterisation studies of differentstack components. Thermal impedances and flow fieldpermeability were measured. Mass transport limitations in the cathodes were studied byvarying the electrode thickness, partial pressure and humidityof oxygen. <b>Keywords:</b>polymer electrolyte membrane fuel cell (PEFC),contact resistance, clamping pressure, stainless steel,membrane degradation, current distribution, gas diffusionlayer, stack, thermal impedance, permeability.
|
3 |
Development of characterisation methods for the components of the polymer electrolyte fuel cellIhonen, Jari January 2003 (has links)
<p>In this work characterisation methods and fuel cell hardwarewere developed for studying the components of the polymerelectrolyte fuel cell (PEFC). Humidifiers and other componentswere tested in order to develop reproducible and reliableexperimental techniques. A set-up for testing larger cells andstacks was developed.</p><p>A new type of polymer electrolyte membrane fuel cell wasdeveloped for laboratory investigations. Current collectormaterial and gas flow channels can easily be modified in thisconstruction. The electrode potentials can be measured at thegas backing layers, thereby allowing measurement of contactresistances. The use of a reference electrode is alsopossible.</p><p>Contact resistances were studied in situ as a function oftime, clamping pressure, gas pressure and current density.Ex-situ measurements were used to validate the in-situ contactresistance measurements. The validity and error sources of theapplied in-situ measurement methods with reference electrodesand potential probes were studied using both computersimulations and experiments.</p><p>An in-house membrane electrode assembly (MEA) productionline was developed. In-house produced MEAs were utilised inboth membrane degradation and mass transport studies.</p><p>The durability testing of PVDF based membranes membranes wasstudied both by fuel cell experiments and ex-situ testing.Raman spectra were measured for used membranes.</p><p>A current distribution measurement method was developed. Theeffect of inlet humidification and gas composition at thecathode side was studied. In addition, two different flow fieldgeometries were studied. The results of current distributionmeasurements were used to validate a PEFC model.</p><p>Methods for characterising gas diffusion layer (GDL)performance by fuel cell testing and ex-situ measurements weredeveloped. The performance of GDL materials was tested withvarying cell compression and cathode humidity. Porosity, poresize distribution and contact angle were determined. Electricalcontact resistance, thermal impedance and gas permeabilitieswere measured at different compression levels.</p><p>Development work on a stack with stainless steel net wascarried out as well as characterisation studies of differentstack components. Thermal impedances and flow fieldpermeability were measured.</p><p>Mass transport limitations in the cathodes were studied byvarying the electrode thickness, partial pressure and humidityof oxygen.</p><p><b>Keywords:</b>polymer electrolyte membrane fuel cell (PEFC),contact resistance, clamping pressure, stainless steel,membrane degradation, current distribution, gas diffusionlayer, stack, thermal impedance, permeability.</p>
|
Page generated in 0.0731 seconds