1 |
The relationships between crime rate and income inequality : evidence from ChinaZhang, Wenjie, active 2013 05 December 2013 (has links)
The main purpose of this study is to determine if a Bayesian approach can better capture and provide reasonable predictions for the complex linkage between crime and income inequality. In this research, we conduct a model comparison between classical inference and Bayesian inference. The conventional studies on the relationship between crime and income inequality usually employ regression analysis to demonstrate whether these two issues are associated. However, there seems to be lack of use of Bayesian approaches in regard to this matter. Studying the panel data of China from 1993 to 2009, we found that in addition to a linear mixed effects model, a Bayesian hierarchical model with informative prior is also a good model to describe the linkage between crime rate and income inequality. The choice of models really depends on the research needs and data availability. / text
|
2 |
Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approachesFernandes, Amélia Milene Correia 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
|
3 |
Regressão binária nas abordagens clássica e Bayesiana / Binary regression in the classical and Bayesian approachesAmélia Milene Correia Fernandes 16 December 2016 (has links)
Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funções de ligações probito, logito, complemento log-log, transformação box-cox e probito-assimétrico. Na abordagem clássica apresentamos as suposições e o procedimento para ajustar o modelo de regressão e verificamos a precisão dos parâmetros estimados, construindo intervalos de confiança e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori não informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáveis auxiliares para obter a distribuição a posteriori conhecida, facilitando a implementação do algoritmo do Amostrador de Gibbs. No entanto, a introdução destas variáveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelação. Através do estudo de simulação mostramos que na inferência clássica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confiança assintótica está de acordo com o esperado na teoria assintótica. Na inferência bayesiana constatamos que o uso de variáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrático médio (EQM), erro percentual absoluto médio (MAPE) e erro percentual absoluto médio simétrico (SMAPE). Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variação do Ibovespa e a variação do valor diário do fechamento da cotação do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variáveis que influenciam a aprovação do aluno. / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian approach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior distributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that influence the approval of the student.
|
4 |
Regressão binária nas abordagens clássica e bayesianaFernandes, Amélia Milene Correia 16 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-05-23T16:23:56Z
No. of bitstreams: 1
DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-05T19:07:22Z (GMT) No. of bitstreams: 1
DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-06-05T19:07:28Z (GMT) No. of bitstreams: 1
DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5) / Made available in DSpace on 2017-06-05T19:18:45Z (GMT). No. of bitstreams: 1
DissAMCF.pdf: 1964890 bytes, checksum: 84bcbd06f74840be6fc5f38659c34c07 (MD5)
Previous issue date: 2016-12-16 / Não recebi financiamento / The objective of this work is to study the binary regression model under the frequentist and Bayesian approaches using the probit, logit, log-log complement, Box-Cox transformation and skewprobit as link functions. In the classical approach we presented assumpti- ons and procedures used in the regression modeling. We verified the accuracy of the estimated parameters by building confidence intervals and conducting hypothesis tests. In the Bayesian appro- ach we made a comparative study using two methodologies. For the first methodology, we considered non-informative prior dis- tributions and the Metropolis-Hastings algorithm to estimate the model. In the second methodology we used auxiliary variables to obtain the known a posteriori distribution, allowing the use of the Gibbs Sampler algorithm. However, the introduction of these auxiliary variables can generate correlated values and needs the use of clustering of unknown quantities in blocks to reduce the autocorrelation. In the simulation study we used the AIC and BIC information criteria to select the most appropriate model and we evaluated whether the coverage probabilities of the confidence interval is in agre- ement with that expected by the asymptotic theory. In Bayesian approach we found that the inclusion of auxiliary variables in the model results in a more efficient algoritm according to the MSE, MAPE and SMAPE criteria. In this work we also present applications to two real datasets. The first dataset used is the variation of the Ibovespa and variation of the daily value of the American dollar at the time of closing the 2013 to 2016. The second dataset, used is an educational data set (INEP-2013), where we are interested in studying the factors that infuence the approval of the student. / Este trabalho tem como objetivo estudar o modelo de regressão binária nas abordagens clássica e bayesiana utilizando as funcoes de ligacoes probito, logito, complemento log-log, transformaçao box-cox e probito-assimetrico. Na abordagem clássica apresentamos as suposicoes e o procedimento para ajustar o modelo de regressao e verificamos a precisão dos parâmetros estimados, construindo intervalos de confianca e testes de hipóteses. Enquanto que, na inferência bayesiana fizemos um estudo comparativo utilizando duas metodologias. Na primeira metodologia consideramos densidades a priori nao informativas e utilizamos o algoritmo Metropolis-Hastings para ajustar o modelo. Na segunda metodologia utilizamos variáaveis auxiliares para obter a distribuiçcaão a posteriori conhecida, facilitando a implementacão do algoritmo do Amostrador de Gibbs. No entanto, a introduçao destas variaveis auxiliares podem gerar valores correlacionados, o que leva à necessidade de se utilizar o agrupamento das quantidades desconhecidas em blocos para reduzir a autocorrelaçcãao.
Atraves do estudo de simulacao mostramos que na inferência classica podemos usar os critérios AIC e BIC para escolher o melhor modelo e avaliamos se o percentual de cobertura do intervalo de confianca assintotica está de acordo com o esperado na teoria assintática. Na inferência bayesiana constatamos que o uso de va-riaáveis auxiliares resulta em um algoritmo mais eficiente segundo os critérios: erro quadrâtico medio (EQM), erro percentual absoluto medio (MAPE) e erro percentual absoluto medio simetrico (SMAPE).
Como ilustração apresentamos duas aplicações com dados reais. Na primeira, consideramos um conjunto de dados da variaçao do Ibovespa e a variacao do valor diário do fechamento da cotacao do dólar no período de 2013 a 2016. Na segunda aplicação, trabalhamos com um conjunto de dados educacionais (INEP-2013), focando nos estudos das variaveis que influenciam a aprovacao do aluno.
|
Page generated in 0.0681 seconds