• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Double-Label Analyses of the Coexistence of Somatostatin With GABA and Glycine in Amacrine Cells of the Larval Tiger Salamander Retina

Watt, Carl B., Florack, Valarie J. 16 July 1993 (has links)
To investigate the possible GABAergic nature of somatostatin-immunoreactive neurons of the larval tiger salamander retina, somatostatin immunocytochemistry was combined with either γ-aminobutyric acid (GABA) immunocytochemistry or autoradiography of GABA high-affinity uptake. A total of 1,062 somatostatin cells were visualized in these studies. Double-label immunocytochemistry revealed that 96.3% of somatostatin-immunoreactive cells expressed GABA immunoreactivity. Double-label studies combining somatostatin immunocytochemistry with autoradiography of GABA high-affinity uptake revealed a slightly lower percentage (93%) of colocalization. Double-labelled cells were identified as Type 1, Type 2 and displaced amacrine cells. The small percentage of somatostatin-immunoreactive cells that did not co-label for GABA were identified as Type 1 amacrine cells. An analysis of retinal sections processed for double-label immunocytochemistry revealed that approximately 5% of GABA-immunoreactive cells in the amacrine and ganglion cell layers co-label for somatostatin. Somatostatin immunocytochemistry was combined with autoradiography of glycine high-affinity uptake to examine whether tiger salamander somatostatin-amacrine cells express this glycine marker. A total of 100 somatostatin-immunoreactive amacrine cells were visualized in double-label preparations. None of these cells were observed to exhibit glycine high-affinity uptake.

Page generated in 0.1031 seconds