• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Study of the Combined Performance of Learning Algorithms and Preprocessing Techniques for Text Classification

Grancharova, Mila, Jangefalk, Michaela January 2018 (has links)
With the development in the area of machine learning, society has become more dependent on applications that build on machine learning techniques. Despite this, there are extensive classification tasks which are still performed by humans. This is time costly and often results in errors. One application in machine learning is text classification which has been researched a lot the past twenty years. Text classification tasks can be automated through the machine learning technique supervised learning which can lead to increased performance compared to manual classification. When handling text data, the data often has to be preprocessed in different ways to assure a good classification. Preprocessing techniques have been shown to increase performance of text classification through supervised learning. Different processing techniques affect the performance differently depending on the choice of learning algorithm and characteristics of the data set.   This thesis investigates how classification accuracy is affected by different learning algorithms and different preprocessing techniques for a specific customer feedback data set. The researched algorithms are Naïve Bayes, Support Vector Machine and Decision Tree. The research is done by experiments with dependency on algorithm and combinations of preprocessing techniques. The results show that spelling correction and removing stop words increase the accuracy for all classifiers while stemming lowers the accuracy for all classifiers. Furthermore, Decision Tree was most positively affected by preprocessing while Support Vector Machine was most negatively affected. A deeper study on why the preprocessing techniques affected the algorithms in such a way is recommended for future work. / I och med utvecklingen inom området maskininlärning har samhället blivit mer beroende av applikationer som bygger på maskininlärningstekniker. Trots detta finns omfattande klassificeringsuppgifter som fortfarande utförs av människor. Detta är tidskrävande och resulterar ofta i olika typer av fel. En  uppgift inom maskininlärning är textklassificering som har forskats mycket i de senaste tjugo åren. Textklassificering kan automatiseras genom övervakad maskininlärningsteknik vilket kan leda till effektiviseringar jämfört med manuell klassificering. Ofta måste textdata förbehandlas på olika sätt för att säkerställa en god klassificering. Förbehandlingstekniker har visat sig öka textklassificeringens prestanda genom övervakad inlärning. Olika förbetningstekniker påverkar prestandan olika beroende på valet av inlärningsalgoritm och egenskaper hos datamängden.  Denna avhandling undersöker hur klassificeringsnoggrannheten påverkas av olika inlärningsalgoritmer och olika förbehandlingstekniker för en specifik datamängd som utgörs av kunddata. De undersökta algoritmerna är naïve Bayes, supportvektormaskin och beslutsträd. Undersökningen görs genom experiment med beroende av algoritm och kombinationer av förbehandlingstekniker. Resultaten visar att stavningskorrektion och borttagning av stoppord ökar noggrannheten för alla klassificerare medan stämming sänker noggrannheten för alla. Decision Tree var dessutom mest positivt påverkad av de olika förbehandlingsmetoderna medan Support Vector Machine påverkades mest negativt. En djupare studie om varför förbehandlingsresultaten påverkat algoritmerna på ett sådant sätt rekommenderas för framtida arbete.
2

Biofyzikální interpretace kvantitativního fázového zobrazení / Biophysical interpretation of quantitative phase image

Štrbková, Lenka January 2018 (has links)
Práce se zabývá interpretací kvantitativního fázového zobrazení pomocí techniky koherencí řízené holografické mikroskopie. Vzhledem k tomu, že tato technika generuje velké množství kvantitativních fázových obrazů o nezanedbatelné velikosti, manuální analýza by byla časově náročná a neefektivní Za účelem urychlení analýzy obrazů získaných pomocí koherencí řízené holografické mikroskopie je v této práci navržena metodika automatizované interpretace kvantitativních fázových obrazů pomocí strojového učení s učitelem. Kvantitativní fázové obrazy umožňují extrakci parametrů charakterizujících distribuci suché hmoty v buňce a poskytují tak cennou informaci o buněčném chování. Cílem této práce je navrhnout metodologii pro automatizovanou klasifikaci buněk při využití této kvantitativní informace jak ze statických, tak z časosběrných kvantitativních fázových obrazů. Navržená metodika byla testována v experimentech s živými buňkami, jimiž byla vyhodnocena výkonnost klasifikace a významnost parametrů získaných z kvantitativních fázových obrazů.
3

Data Fusion of Infrared, Radar, and Acoustics Based Monitoring System

Mirzaei, Golrokh 22 July 2014 (has links)
No description available.

Page generated in 0.0952 seconds