1 |
Critical Heat Stress Evaluation In Two Ebola EnsemblesLee, Christopher T. 24 March 2016 (has links)
Ebola, a type of filovirus that causes hemorrhagic fevers, dominated global headlines in 2014 when the largest Ebola epidemic in history took place in West Africa. Healthcare practitioners were at particular risk of contracting Ebola while taking care of patients with the disease because they were easily exposed to bodily fluids such as blood, urine, saliva, and feces, quite often in the intensive care unit (ICU). While personal protective equipment (PPE) protects the healthcare practitioner by providing an effective barrier against the virus, users were also at risk for heat stress because of the type of protective clothing. In this study, coveralls made of monolithic barriers, which prevent water vapor from escaping the suit, were compared to coveralls made of micro- porous material, which allows evaporated sweat to escape the suit. The Microgard® 2000 TS Plus, made of micro-porous barrier material and the monolithic barrier Microgard® 2300 Plus were compared against a control ensemble of work clothes consisting of a long-sleeve shirt and trouser.
A progressive heat stress protocol was used to determine the critical environment at the upper limit of compensable heat stress. The critical condition was the point at which the heat gain caused by wearing the protective ensemble as well as dry heat exchange was balanced by the maximum heat loss due to evaporative cooling. Wet bulb globe temperature at the critical condition (WBGTcrit ) ,total evaporative resistance (Re,T,a), and clothing adjustable factor (CAF) were calculated for each ensemble based on data at the critical point. Also at the critical condition, participant rectal temperature vi (Tre) , heart rate (HR), skin temperature (Tsk), and physiological strain index (PSI) were noted and compared for each ensemble.
A two-way ANOVA (ensemble x participant) for WBGTcrit and Re,T,a as dependent variables was used to determine whether or not there were differences among ensembles. Tukey’s honest significance test was used to determine where significant differences occurred. WBGTcrit was 33.8, 26.3, and 22.9 °C-WBGT for Work Clothes, M2000, and M2300 respectively. Re,T,a was 0.012, 0.031, and 0.054 kPa m2 W-1 for WC, M2000, and M2300 respectively. The higher the WBGTcrit for an ensemble, the more it can support evaporative cooling and hence the better it is at ameliorating heat stress. Based on this trial, the micro-porous ensemble Microgard® 2000 TS Plus has better heat stress performance than vapor-barrier Microgard® 2300 Plus. As expected, there were no differences for any of the physiological metrics at the critical conditions.
|
Page generated in 0.1115 seconds