1 |
Using cloud resolving model simulations of tropical deep convection to study turbulence in anvil cirrus / Studier av turbulenta rörelser i städmoln medhjälp av numeriska simuleringar av tropisk konvektionBroman Beijar, Lina January 2008 (has links)
Identifying the dynamical processes that are active in tropical cirrus clouds is important for understanding the role of cirrus in the tropical atmosphere. This study focuses on analyzing turbulent motions inside tropical anvil cirrus with the use of a Cloud Resolving Model. Convection in the transition from shallow to deep convection has been simulated with Colorado State University Large Eddy Simulator/Cloud Resolving Model System for Atmospheric Model (SAM 6.3) in a high resolution three-dimensional simulation and anvil cirrus formed in the end of this simulation has been analyzed. For model set up, data gathered during the Tropical Rainfall Measuring Mission Large-Scale Biosphere-Atmosphere (TRMM LBA) field experiment in Amazonas, Brazil have been used as large scale forcing. 31 anvil clouds have been localized from a single time step of the simulation, “a snapshot”, of the entire simulated cloud field consisting of convective clouds of different scales and subsequently divided into three categories that represent different stages of the anvil lifetime; growing, mature and dissipating anvil stages. The classification is based on in-cloud properties such as cloud condensate content and vertical velocities. The simulated anvils have been analyzed both individually and as groups to examine the transition from isotropic three-dimensional turbulence in the convective core of the thunderstorm to stratified two-dimensional turbulence in the anvil outflow. A dimensionless number F is derived and used as a measure of the “isotropic” behavior of the turbulence inside the cloud. F is expressed as the ratio between the horizontal part of TKE and the total (horizontal + vertical) Experiments show that SAM 6.3 clearly can resolve turbulent structures and that the transition from isotropic three-dimensional turbulence to stratified two-dimensional turbulence occurs in the middle layers of the mature and dissipating anvil stages. / Sammanfattning av ”Studier av turbulenta rörelser i städmoln med hjälp av numeriska simuleringar av tropisk konvektion” Städmoln i tropikerna har stor inverkan på strålningsballansen på grund av de är så vanligt förekommande och att de ligger på hög höjd i atmosfären. Att förstå de drivande krafterna som är aktiva i skapandet och underhållandet av städmoln är viktiga för att få en bra bild av rollen städmoln spelar i den tropiska atmosfären. Den här uppsatsen fokuserar på att studera turbulenta rörelser inuti tropiska städmoln med hjälp av en molnmodell. Tropisk konvektion har simulerats med Colorado State University’s molnmodell SAM 6.3 i en högupplöst tredimensionell simulering. Data från en ”ögonblicksbild” av det simulerade molnfältet har analyserats och 31 städmoln har valts ut och studerats vidare. De simulerade städmolnen indelades i tre olika kategorier baserat på utvecklingsstadier; växande städmoln, moget städmoln och skingrade städmoln. Stadieklassificeringen bestämdes beroende på isvatteninnehåll och vertikalhastigheter i molnet. Städmolnen har därefter analyserats både individuellt och som grupper för att lokalisera och analysera övergången från tredimensionell isotropisk turbulens i kärnan av Cb-molnet till tvådimensionell stratifierad turbulens i städmolnet. För att initiera simuleringen användes mätdata insamlade under fältexperimentet TRMM LBA (Tropical Rainfall Measuring Mission Large-Scale Biosphere-Atmosphere) i Amazonas, Brasilien. För att beskriva turbulenta rörelser i molnen togs det dimensionslösa talet 𝐹 fram som ett mått på isotropin. 𝐹 uttrycks som kvoten mellan den horisontella delen av TKE och den totala (horisontell och vertikal). Den här studien visar att den undersökta molnmodellen SAM 6.3 klart kan simulera turbulenta i rörelser i övergången mellan isotropisk till horisontell turbulens i olika stadier av städmolnens livscykel. Mina analyser visar att övergången sker främst i de mellersta skikten av de mogna och skingrade stadierna av städmolnets utveckling.
|
2 |
<sub><strong>THE EFFECTS OF SURFACE CHARACTERISTICS AND SYNOPTIC PATTERNS ON TORNADIC STORMS IN THE UNITED STATES</strong></sub>Qin Jiang (19183822) 21 July 2024 (has links)
<p dir="ltr">It is known that tornadic storms favor environments characteristic of high values of thermal instability, adequate vertical wind shear, abundant near-surface moisture supply, and strong storm-relative helicity at the lowest 1-km boundary layer. These mesoscale environmental conditions and associated storm behaviors are strongly governed by large-scale synoptic patterns and sensitive to variabilities in near-surface characteristics, which are less known in the current research community. This study aims to advance the relatively underexplored area regarding the interaction between surface characteristics, mesoscale environmental conditions, and large-scale synoptic patterns driving tornadic storms in the U.S. </p><p dir="ltr">We first investigate the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models.</p><p dir="ltr">We then examine the behaviors and dynamics of TLVs in response to a range of surface drag strengths in idealized simulations and explore their sensitivities to different storm environments. We find that the contribution of surface drag on TLV development is strongly governed by the interaction between surface rotation, surface convergence boundaries, and the low-level mesocyclone. Surface drag facilitates TLV formation by enhancing near-surface vortices and low-level lifting, mitigating the need for an intense updraft gradient developing close to the ground. As surface drag increases, a wider circulation near the surface blocks the inflow from directly reaching the rotating core, leading to a less tilted structure that allows the TLV position beneath the pressure minima aloft. Further increase in drag strength discourages TLV intensification by suppressing vertical stretching due to a negative vertical pressure perturbation gradient force, and it stops benefiting from the support of surrounding convergence boundaries and the overlying low-level updraft, instead becoming detached from them. We hence propose a favorable condition for TLV formation and duration where a TLV forms a less tilted structure directly beneath the low-level mesocyclone but also evolves near surrounding surface boundaries, which scenario strongly depends on underlying surface drag strength. </p><p dir="ltr">Beyond near-surface characteristics, we further explore how these storm-favorable environmental conditions may interact with the larger-scale synoptic patterns and how these interactions may affect the tornadic storm potential in the current warming climate. We employ hierarchical clustering analysis to classify the leading synoptic patterns driving tornadic storms across different geographic regions in the U.S. We find that the primary synoptic patterns are distinguishable across geographic regions and seasonalities. The intense upper-level jet streak described by the high values of eddy kinetic energy (EKE) associated with the dense distribution of Z500 contours dominates the tornado events in the southeast U.S. in the cold season (November-March). Late Spring and early Summer Tornado events in the central and south Great Plains are dominated by deep trough systems to the west axes of the tornado genesis position, while more summer events associated with weak synoptic forcing are positioned closer to the lee side of Rocky Mountain. Moreover, the increasing trend in tornado frequency in the southeastern U.S. is mainly driven by synoptic patterns with intense forcing, and the decreasing trends in portions of the Great Plains are associated with weak synoptic forcing. This finding indicates that the physical mechanisms driving the spatial trends of tornado occurrences differ across regions in the U.S.</p>
|
Page generated in 0.1024 seconds