• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Substructure and Gas Clumping in the Outskirts of Abell 133

Joshi, Gandhali January 2013 (has links)
Galaxy clusters are powerful tools for studying various astrophysical principles. Gas accreting onto the cluster is heated to 10^7-10^8 K through adiabatic compression and shocks, making clusters highly luminous in X-ray imaging. Measurements of the gas density and temperature profiles can be used to calculate the gas mass fraction f_gas, which is expected to closely match the cosmic baryon fraction Ω_b/Ω_m. Recent observations have found entropy profiles in cluster outskirts that are shallower than predicted and values of f_gas that are higher than the Universal baryon fraction inferred from the Cosmic Microwave Background (CMB). Abell 133 was an ideal candidate for studying this phenomenon, since it had recently been observed in a wide (R≈30') Chandra mosaic with an exposure time of ∼2 Ms. The X-ray imaging was combined with existing optical imaging from the Canada-France-Hawaii Telescope (CFHT) and spectroscopy obtained from the Magellan telescope, to search for any possible gas clumps and to study their properties. The photometric analysis yielded over 3200 red sequence galaxies to a depth of r'=22.5, which were used to create a Gaussian smoothed intensity map and a significance map of the cluster (compared to CFHT Legacy Survey data). About 6 significant overdensities were detected in the significance map, although these did not fully correspond to contours obtained from the X-ray image. Spectroscopy obtained on the cluster yielded ∼700 secure redshifts, of which about 180 were cluster members. This included data from the NOAO Fundamental Plane Survey (NFPS) and the 6 Degree Field Galaxy Survey (6dFGS). We found a cluster redshift of z=0.0561±0.0002 and a velocity dispersion of σ=743±43 km/s. The dynamical analysis gave a virial radius of r_v=1.44±0.03 Mpc and a virial mass of M_v=(5.9±0.8)×10^14 M_sun. We also found values of R_500=1.21±0.07 Mpc and M_500=(5.3±0.9)×10^14 M_sun for γ=1/3 and R_500=0.99±0.05 Mpc and M_500=(2.9±0.5)×10^14 M_sun for γ=1/2, where γ is a parameter related to the assumed density profile and the velocity anisotropy. About 30 overdensities with a radius R_c≥30" were detected as gas clumps on the X-ray image. The galaxy distribution in these clumps was analyzed, both for the stacked signal as well as the individual clumps, in ten parallel colour-magnitude bands to find any significant red sequences associated with them. Most of these clumps appeared to be background systems, some consisting of 1-2 galaxies, others being small groups or clusters. Only 2-3 clumps appeared to be associated with the cluster itself. This suggests that the cluster density profile is actually quite smooth, which may not agree with recent numerical simulations. Further studies are required to determine if the cluster density distribution is consistent with what is predicted and the nature of the background systems.
2

Substructure and Gas Clumping in the Outskirts of Abell 133

Joshi, Gandhali January 2013 (has links)
Galaxy clusters are powerful tools for studying various astrophysical principles. Gas accreting onto the cluster is heated to 10^7-10^8 K through adiabatic compression and shocks, making clusters highly luminous in X-ray imaging. Measurements of the gas density and temperature profiles can be used to calculate the gas mass fraction f_gas, which is expected to closely match the cosmic baryon fraction Ω_b/Ω_m. Recent observations have found entropy profiles in cluster outskirts that are shallower than predicted and values of f_gas that are higher than the Universal baryon fraction inferred from the Cosmic Microwave Background (CMB). Abell 133 was an ideal candidate for studying this phenomenon, since it had recently been observed in a wide (R≈30') Chandra mosaic with an exposure time of ∼2 Ms. The X-ray imaging was combined with existing optical imaging from the Canada-France-Hawaii Telescope (CFHT) and spectroscopy obtained from the Magellan telescope, to search for any possible gas clumps and to study their properties. The photometric analysis yielded over 3200 red sequence galaxies to a depth of r'=22.5, which were used to create a Gaussian smoothed intensity map and a significance map of the cluster (compared to CFHT Legacy Survey data). About 6 significant overdensities were detected in the significance map, although these did not fully correspond to contours obtained from the X-ray image. Spectroscopy obtained on the cluster yielded ∼700 secure redshifts, of which about 180 were cluster members. This included data from the NOAO Fundamental Plane Survey (NFPS) and the 6 Degree Field Galaxy Survey (6dFGS). We found a cluster redshift of z=0.0561±0.0002 and a velocity dispersion of σ=743±43 km/s. The dynamical analysis gave a virial radius of r_v=1.44±0.03 Mpc and a virial mass of M_v=(5.9±0.8)×10^14 M_sun. We also found values of R_500=1.21±0.07 Mpc and M_500=(5.3±0.9)×10^14 M_sun for γ=1/3 and R_500=0.99±0.05 Mpc and M_500=(2.9±0.5)×10^14 M_sun for γ=1/2, where γ is a parameter related to the assumed density profile and the velocity anisotropy. About 30 overdensities with a radius R_c≥30" were detected as gas clumps on the X-ray image. The galaxy distribution in these clumps was analyzed, both for the stacked signal as well as the individual clumps, in ten parallel colour-magnitude bands to find any significant red sequences associated with them. Most of these clumps appeared to be background systems, some consisting of 1-2 galaxies, others being small groups or clusters. Only 2-3 clumps appeared to be associated with the cluster itself. This suggests that the cluster density profile is actually quite smooth, which may not agree with recent numerical simulations. Further studies are required to determine if the cluster density distribution is consistent with what is predicted and the nature of the background systems.
3

Polarization Variability Due to Clumps in the Winds of Wolf-Rayet Stars

Li, Q., Cassinelli, J. P., Brown, J. C., Ignace, Richard 29 May 2012 (has links)
Wolf-Rayet (WR) stars are understood to have clumpy winds [1]. Robert et al. [2] found a statistical relation between the variations of the polarization and the scattering light intensity, R = σ p/σ phot ≈ 0.05. To explain this result, we propose a model in which clumps are ejected from the surface of WR stars uniformly in space with a Gaussian time interval distribution. According to the observed R along with the subpeaks on the emission lines of WR stars, we can obtain the parameters of the velocity law index β, and of the clump ejection rate in a flow time N. Also, the fraction η of the total mass loss rate contained in the clumps can be found from the observed polarization.
4

Fibrin(ogen)-pathogen Interactions Support Antimicrobial Host Defense following Staphylococcus Aureus Peritonitis Infection

Negrón, Oscar A. January 2017 (has links)
No description available.
5

Refining the Concept of Combining Hyperspectral and Multi-angle Sensors for Land Surface Applications

Simic, Anita 08 March 2011 (has links)
Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content. This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements. To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral reflectances. It has been successfully demonstrated that the off-nadir hyperspectral simulations could be closely reconstructed based on the nadir hyperspectral reflectance and off-nadir multi-spectral reflectance in the red and NIR bands. This is shown using the Compact High-resolution Imaging Spectrometer (CHRIS) and Compact Airborne Spectrographic Imager (CASI) data acquired over a forested area in the Sudbury region (Ontario, Canada). Through intensive validation using field data, it is demonstrated that the combination of reflectances at two angles, the hotspot and darkspot, through the Normalized Difference between Hotspot and Darkspot (NDHD) index has the strongest response to changes in vegetation clumping, an important structural component of canopy. Clumping index (Ω) and Leaf Area Index (LAI) maps are generated based on previous algorithms as well as empirical relationships developed in this study. To retrieve chlorophyll content, inversion of the 5-Scale model is performed by developing Look-Up Tables (LUTs) that are based on the improved structural characteristics developed using multi-angle data. The generated clumping index and LAI maps are used in the LUTs to estimate leaf reflectance. Inversion of the leaf reflectance model, PROSPECT, is further employed to estimate chlorophyll content per unit leaf area. The estimated leaf chlorophyll contents are in good agreement with field-measured values. The refined measurement concept of combining hyperspectral with multispectral multi-angle data provides the opportunity for simultaneous retrieval of vegetation structural and biochemical parameters.
6

Characterization of the Effect of Serum and Chelating Agents on Staphylococcus aureus Biofilm Formation; Chelating Agents Augment Biofilm Formation through Clumping Factor B

Abraham, Nabil Mathew 16 November 2011 (has links)
Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We investigated the molecular basis of this phenomenon. Deletion and complementation analysis and thereafter antibody based inhibition assays confirmed a functional role for the surface adhesin clumping factor B as the causative determinant associated with the increased biofilm phenotype. Finally, we investigated the regulation of clumping factor B-mediated biofilm formation and the basis for the strain dependence. Regulation was determined to occur via two novel post-translational networks- one affecting ClfB activity, mediated by Ca2+ binding to the EF-Hand domain, and the other affecting protein stability, mediated by the enzymatic activity of the metalloprotease-aureolysin. Polymorphisms within the aureolysin gene sequence, between strains, was identified as the basis for some strains forming robust biofilms within chelated media versus other than do not exhibit this phenotype.
7

Refining the Concept of Combining Hyperspectral and Multi-angle Sensors for Land Surface Applications

Simic, Anita 08 March 2011 (has links)
Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content. This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements. To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral reflectances. It has been successfully demonstrated that the off-nadir hyperspectral simulations could be closely reconstructed based on the nadir hyperspectral reflectance and off-nadir multi-spectral reflectance in the red and NIR bands. This is shown using the Compact High-resolution Imaging Spectrometer (CHRIS) and Compact Airborne Spectrographic Imager (CASI) data acquired over a forested area in the Sudbury region (Ontario, Canada). Through intensive validation using field data, it is demonstrated that the combination of reflectances at two angles, the hotspot and darkspot, through the Normalized Difference between Hotspot and Darkspot (NDHD) index has the strongest response to changes in vegetation clumping, an important structural component of canopy. Clumping index (Ω) and Leaf Area Index (LAI) maps are generated based on previous algorithms as well as empirical relationships developed in this study. To retrieve chlorophyll content, inversion of the 5-Scale model is performed by developing Look-Up Tables (LUTs) that are based on the improved structural characteristics developed using multi-angle data. The generated clumping index and LAI maps are used in the LUTs to estimate leaf reflectance. Inversion of the leaf reflectance model, PROSPECT, is further employed to estimate chlorophyll content per unit leaf area. The estimated leaf chlorophyll contents are in good agreement with field-measured values. The refined measurement concept of combining hyperspectral with multispectral multi-angle data provides the opportunity for simultaneous retrieval of vegetation structural and biochemical parameters.
8

Study of Platelet-mediated clumping adhesion phenotypes in Plasmodium falciparum malaria

Onyambu, Frank Gekara January 2015 (has links)
Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes (IEs) is a common property of field isolates associated with severe disease (Pain, Ferguson et al. 2001). Platelet receptors CD36 (Pain, Ferguson et al. 2001), P-Selectin (Wassmer, Taylor et al. 2008) and gC1qR (Biswas, Hafiz et al. 2007) mediate clumping. To characterize the molecular specificities of the clumping phenotype, I cloned clumping parasite line IT/C10 by limiting dilution. I characterized var gene expression in the IT/C10 clones using generic primers for the DBL tag region (Bull, Berriman et al. 2005). Clumping assays were conducted in the presence of specific reagents to delineate host factors hypothesized to contribute to development of the clumping phenotype. Finally, I conducted a clinical study with isolates from children with malaria in Kilifi, Kenya. This study shows that in parasite line IT/C10, platelet-mediated clumping is associated with Itvar30 suggesting a prominent role for the PfEMP-1 encoded by this var gene in development of platelet-mediated clumping. For IT/C10 parasites, platelet activation appears to be involved in platelet-mediated clumping. Platelet P-Selectin appears to mediate clumping using lectin-dependent interactions. To further elucidate the mechanisms that mediate clumping by host platelets, I have used a panel of platelet antagonists to delineate specific platelet activation pathways. Our results show that platelet activation plays an important role in platelet-mediated clumping. Finally, in this study, platelet-mediated clumping was associated with parasitaemia, but not with disease severity.
9

Záření v hvězdných větrech / Radiation in stellar winds. Resonance line formation in inhomogeneous hot star winds

Šurlan, Brankica January 2012 (has links)
Title: Radiation in stellar winds. Resonance line formation in inhomogeneous hot star winds Author: M.Sc. Brankica Šurlan Department: Astronomical Institute of the Academy of Sciences of the Czech Republic Supervisor: RNDr. Jiří Kubát, CSc., Astronomical Institute of the Academy of Sciences of the Czech Republic Abstract: To incorporate the three-dimensional (3-D) nature of stellar wind clump- ing into radiative transfer calculations, in this thesis a newly developed full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds is presented and used to investigate how different model parameters influence reso- nance line formation. Realistic 3-D models that describe the dense as well as the rarefied wind components are used to model the formation of resonance lines in a clumped stellar wind. Non-monotonic velocity fields are accounted for as well. It is shown that the 3-D density and velocity wind inhomogeneities have very strong impact on the resonance line formation. The models show that the line opacity is lower for a larger clump separation and shallower velocity gradients within the clumps. They also demonstrate that to obtain empirically correct mass-loss rates from UV resonance lines, wind clumping and its 3-D nature must be taken into account. 1
10

Calibration of the clumped-isotope thermometer in foraminifera and its application to paleoclimatic reconstructions of the mid-Pleistocene in the Gulf of Taranto / Calibration du thermomètre "clumping isotopique" dans les foraminifères et son application à des reconstitutions paléoclimatologiques du Pléistocène moyen dans le Golfe de Tarente

Peral, Marion 19 October 2018 (has links)
Quantifier les variations de température océanique du passé est nécessaire pour comprendre les mécanismes qui régissent l’évolution climatique. Les méthodes de paléo-thermométrie classiques peuvent souffrir de limitation inhérente à l’écologie des organismes et/ou à cause de l’influence d'effets physico-chimiques (salinité, acidité de l’eau de mer…). Ce travail se focalise sur la technique de paléothermométrie Δ47, qui repose sur la mesure du « clumping isotopique » dans les carbonates. Il vise d’abord à établir une calibration appliquée aux foraminifères et ensuite à mettre en œuvre cette calibration pour l’étude des variations climatiques au cours de la transition du Pléistocène moyen (MPT). Notre calibration Δ47-température des foraminifères planctoniques et benthiques, prélevés dans des sédiments modernes, couvre une gamme de température de -2 à 25°C. Les valeurs de Δ47 sur 9 espèces de foraminifères présentent une excellente corrélation avec la température de calcification des organismes, estimée à partir des mesures isotopiques de l’oxygène. Les résultats obtenus confirment l’absence d’effets liés à l’écologie des foraminifères (effets vitaux et de taille des organismes) et démontrent que la salinité n’affecte pas les mesures de Δ47. Cette étude constitue une avancée méthodologique importante pour les futures études paléocéanographiques sur les foraminifères. La MPT correspond à une transition climatique marquée par un changement de fréquence des cycles glaciaires-interglaciaires (de 41 000 à 100 000 ans). La compréhension de cette période est un enjeu scientifique majeur pour appréhender la mise en place du climat actuel. Notre calibration Δ47-température a permis de quantifier les variations de températures au cours de la MPT en mer méditerranée (Section de Montalbano Jonico, sud de l’Italie) et particulièrement des stades isotopiques marins 31 et 19, considérés comme des analogues à l’Holocène. Les résultats indiquent que (i) les températures (Δ47) obtenues sont en adéquation avec les températures obtenues par d’autres paléothermomètres, (2) les températures permettent de retracer les changements de régime océanographique et hydrologique, et (3) la mesure du Δ47 est complément prometteur pour les études multi-méthodes en paléocéanographie. / The quantification of past oceanic temperature changes is a critical requirement for understanding the mechanisms which regulate climate variations. Classical methods of paleothermometry could suffer from well-known limitations related to ecology and/or to physico-chemical biases (sea water salinity, acidity…). This work focuses on clumped-isotope carbonate thermometry (Δ47). It aims to establish a calibration of Δ47 foraminifera and use it to study past climatic variations through the Mid-Pleistocene Transition (MPT). Our Δ47 calibration in planktonic and benthic foraminifera collected from modern marine sediment covers a temperature range of -2 to 25 °C. The clumped-isotope compositions of 9 species of foraminifera show a robust correlation with the calcification temperature, estimated from the measurements of oxygen-18. These results confirm the absence of bias linked to foraminifer ecology (species-specific and foraminifer size effects) and provide evidence that salinity does not affect the Δ47 thermometer. This study constitutes significant methodological progress for future paleoceanographic applications in foraminifera.The MPT is a climatic transition characterized by a shift in the frequencies of glacial-interglacial cycles (from 41 000 to 100 000 years). Understanding the MPT is a major scientific objective, which underlies our effort to study the establishment of our present climate. Our Δ47 calibration was used to quantify temperature changes through the MPT in the Mediterranea Sea (Montalbano Jonico section, south of Italy), and in particular the marine isotopic stages 31 and 19, which may be described as Holocene analogues. We find that (1) Δ47 temperatures are in good agreement with temperatures reconstructed from other paleothermometers, (2) these results allow reconstructing changes in past oceanographic and hydrologic regime, and (3) Δ47 measurement are a promising component of multi-proxy paleoceanographic studies.

Page generated in 0.0639 seconds