• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assembly of a UAV : hardware design of a UAV

BOZKURT, Ugur, Aslan, Mustafa January 2009 (has links)
<p><em>This bachelor thesis is dedicated to assemble the hardware system of a UAV (Unmanned Aerial Vehicle) in order to prepare the platform for an autonomous flight in the air for a given path through the pre-programmed check points. A UAV is an aircraft that contains sensors, GPS, radio system, servomechanisms and computers, which provide the capability of an autonomous flight without a human pilot in the cockpit. A stable flight requires sensing the roll, pitch, and yaw angles of aircraft. Roll and pitch angles were ensured by a sensor system of FMA Direct Company called co-pilot flight stabilization system (CPD4), which allows controlling ailerons and elevator manually.</em></p><p><em>An autopilot is required for steering the aircraft autonomously according the GPS data and the establish waypoints that the airplane have to pass by. The GPS gives heading information to the autopilot, and this uses the information of the next waypoint to decide which direction to go. Hereby an autonomous flight is provided. In this project a lego mindstorm NXT was used as an autopilot that is product of LEGO Company [1]. The output of the autopilot is used to control the airplane servos to fly in the desired direction. A software and hardware interface was designed to allow the autopilot to receive the data from the co-pilot sensor and to transmit data to the co-pilot processor, which will finally steer the actuator servos. Experiments were performed with different parts of the system and the results reported.</em></p>
2

Assembly of a UAV : hardware design of a UAV

BOZKURT, Ugur, Aslan, Mustafa January 2009 (has links)
This bachelor thesis is dedicated to assemble the hardware system of a UAV (Unmanned Aerial Vehicle) in order to prepare the platform for an autonomous flight in the air for a given path through the pre-programmed check points. A UAV is an aircraft that contains sensors, GPS, radio system, servomechanisms and computers, which provide the capability of an autonomous flight without a human pilot in the cockpit. A stable flight requires sensing the roll, pitch, and yaw angles of aircraft. Roll and pitch angles were ensured by a sensor system of FMA Direct Company called co-pilot flight stabilization system (CPD4), which allows controlling ailerons and elevator manually. An autopilot is required for steering the aircraft autonomously according the GPS data and the establish waypoints that the airplane have to pass by. The GPS gives heading information to the autopilot, and this uses the information of the next waypoint to decide which direction to go. Hereby an autonomous flight is provided. In this project a lego mindstorm NXT was used as an autopilot that is product of LEGO Company [1]. The output of the autopilot is used to control the airplane servos to fly in the desired direction. A software and hardware interface was designed to allow the autopilot to receive the data from the co-pilot sensor and to transmit data to the co-pilot processor, which will finally steer the actuator servos. Experiments were performed with different parts of the system and the results reported.
3

Vícečlenné posádky dopravních letadel / Multipilot Airliner's Crew

Munk, Tomáš January 2010 (has links)
The aim of this master„s thesis is detailed study of multipilot airliner?s crew in sence of optimalization of its actions, which is known as Crew Resource Management (CRM). This paper shows what is the main purpose of CRM through the air crash investigations and human factor analysis. According to this findings, the last chapter presents problems of flight crew planning and personnel selection.

Page generated in 0.0342 seconds