• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extraction and chromatography of supercritical fluids

Kithinji, Jacob P. January 1989 (has links)
No description available.
2

High Temperature Corrosion of Single Crystal Sapphire and Zirconia in Coal Gasification and Commercial Glass Environments

Dicic, Zorana 16 July 2004 (has links)
To meet the requirements of precise temperature monitoring at high temperatures in extremely corrosive environments, such as in coal gasifiers, a new sensor technology has been developed. This optical, ultra high temperature measurement system utilizes single crystal sapphire as a sensing element. A series of experiments was performed to determine the corrosion resistance of single crystal sapphire and single crystal fully stabilized cubic zirconia at high temperatures in coal slag and soda lime glass. The amount of corrosion of sapphire and zirconia in corrosive slags was measured at 1200°C, 1300°C, and 1400°C for different exposure times. The microstructural features at the interface of sapphire and zirconia were investigated using SEM and EDX analysis. The experimental measurements as well as SEM micrographs show very little or no degradation of sapphire and zirconia samples in corrosive slags. An interesting phenomenon was observed in the EDX scans of sapphire in the coal slag: the iron from the slag appears to have completely separated from the silicon and deposited at the sapphire surface. This interesting observation can be further explored to study whether this iron layer can be used to control the corrosion of sapphire. / Master of Science

Page generated in 0.0488 seconds