• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Návrh opatření pro plnění emisních limitů u kotle bloku 210 MW / The proposal of measurements to fulfill emission limits for boiler of power unit 210 MW

Smokoň, Pavol January 2014 (has links)
This master‘s thesis deals with denitrification of brown coal-fired boiler of electric power plant. First chapters describe technical characteristics of the boiler and possible measurements which would lead to lowering NOx emissions. In order for boiler to meet emission standards valid from 1.1.2016 flue gas treatment by selective catalytic reduction is proposed. Main part of the thesis is thermal calculation of the boiler with modifications necessary in order to apply SCR. The aim of calculation is to determine flue gas exit temperature and temperature at catalyst area in order to assess the suitability of proposed modifications.
2

A Passive Mid-infrared Sensor to Measure Real-time Particle Emissivity and Gas Temperature in Coal-fired Boilers and Steelmaking Furnaces

Rego Barcena, Salvador 01 August 2008 (has links)
A novel technique for measuring gas temperature and spectral particle emissivity in high-temperature gas-particle streams is presented. The main application of this optical sensor is to improve the process control of batch unit operations, such as steelmaking furnaces. The spectral emission profile of CO and CO2 and the continuous particle emission in the 3.5 to 5 μm wavelength region was recorded and analyzed in real time with a low-resolution passive sensor. The sensor consisted of light collecting optics, a dispersion element (grating spectrometer) and a 64-pixel pyroelectric array. Wavelength and radiance calibrations were performed. The temperature of the gas-particle medium (Tg+p) followed from the least-squares minimization of the difference between the measured radiance in the 4.56-4.7 μm region –which saturates due to the large CO2 concentrations and path lengths in industrial furnaces– and the corresponding blackbody radiance. Particle emissivity (εp) was calculated at 3.95 μm from an asymptotic approximation of the Radiative Transfer Equation that yields the emerging radiance from a semi-infinite particle cloud. The major source of error in the magnitude of Tg+p and εp could come from particle scattering. Through the method of embedded invariance an expression was developed to estimate the lowering effect of particle size and volume fraction on the saturation of the 4.56-4.7 μm CO2 emission region. An iterative procedure for correcting the values of the gas-particle temperature and particle emissivity was applied to the datasets from the two industrial tests. Results from the measurement campaigns with the infrared sensor prototype at two full-scale furnaces are presented. A proof-of-concept test at a coal-fired boiler for electricity production was followed by more extensive measurements at a Basic Oxygen Furnace (BOF) for steelmaking. The second test provided temperature and particle emissivity profiles for eight heats, which highlighted the simplicity of the technique in obtaining in-situ measurements for modeling studies. Through the analysis of the particle emissivity profile in the BOF and the definition of a new variable –the minimum carbon time– a novel end-point strategy to stop the injection of high-purity oxygen during low-carbon heats in BOF converters was proposed.
3

A Passive Mid-infrared Sensor to Measure Real-time Particle Emissivity and Gas Temperature in Coal-fired Boilers and Steelmaking Furnaces

Rego Barcena, Salvador 01 August 2008 (has links)
A novel technique for measuring gas temperature and spectral particle emissivity in high-temperature gas-particle streams is presented. The main application of this optical sensor is to improve the process control of batch unit operations, such as steelmaking furnaces. The spectral emission profile of CO and CO2 and the continuous particle emission in the 3.5 to 5 μm wavelength region was recorded and analyzed in real time with a low-resolution passive sensor. The sensor consisted of light collecting optics, a dispersion element (grating spectrometer) and a 64-pixel pyroelectric array. Wavelength and radiance calibrations were performed. The temperature of the gas-particle medium (Tg+p) followed from the least-squares minimization of the difference between the measured radiance in the 4.56-4.7 μm region –which saturates due to the large CO2 concentrations and path lengths in industrial furnaces– and the corresponding blackbody radiance. Particle emissivity (εp) was calculated at 3.95 μm from an asymptotic approximation of the Radiative Transfer Equation that yields the emerging radiance from a semi-infinite particle cloud. The major source of error in the magnitude of Tg+p and εp could come from particle scattering. Through the method of embedded invariance an expression was developed to estimate the lowering effect of particle size and volume fraction on the saturation of the 4.56-4.7 μm CO2 emission region. An iterative procedure for correcting the values of the gas-particle temperature and particle emissivity was applied to the datasets from the two industrial tests. Results from the measurement campaigns with the infrared sensor prototype at two full-scale furnaces are presented. A proof-of-concept test at a coal-fired boiler for electricity production was followed by more extensive measurements at a Basic Oxygen Furnace (BOF) for steelmaking. The second test provided temperature and particle emissivity profiles for eight heats, which highlighted the simplicity of the technique in obtaining in-situ measurements for modeling studies. Through the analysis of the particle emissivity profile in the BOF and the definition of a new variable –the minimum carbon time– a novel end-point strategy to stop the injection of high-purity oxygen during low-carbon heats in BOF converters was proposed.

Page generated in 0.0532 seconds