Spelling suggestions: "subject:"coarse rockfall"" "subject:"coarse backfill""
1 |
Internal Erosion Phenomena in Embankment Dams : Throughflow and internal erosion mechanismsFerdos, Farzad January 2016 (has links)
In this study, two major internal erosion initiation processes, suffusion and concentrated leak mechanisms, which lead to both defect formation in a dam’s body and its foundation and high throughflow in dams subjected to internal erosion were studied. This understanding has the potential to facilitate numerical modelling and expedite dam safety assessment studies. The throughflow properties of coarse rockfill material were studied by; analysing filed pump test data, performing extensive laboratory experiments with a large-scale apparatus and numerically simulating the three-dimensional flow through coarse rock materials, replicating the material used in the laboratory experiments. Results from the tests demonstrate that the parameters of the nonlinear momentum equation of the flow depend on the Reynolds number for pore Reynolds numbers lower than 60000. Numerical studies were also carried out to conduct numerical experiments. By applying a Lagrangian particle tracking method, a model for estimating the lengths of the flow channels in the porous media was developed. The shear forces exerted on the coarse particles in the porous media were found to be significantly dependent on the inertial forces of the flow. Suffusion and concentrated leak mechanisms were also studied by means of laboratory experiments to develop a theoretical framework for continuum-based numerical modelling. An erosion apparatus was designed and constructed with the capability of applying hydraulic and mechanical loading. Results were then used to develop constitutive laws of the soil erosion as a function of the applied hydromechanical load for both suffusion and concentrated leak mechanisms. Both the initiation and mass removal rate of were found to be dependent on the soil in-situ stresses. A three-dimensional electrical-resistivity-based tomography method was also adopted for the internal erosion apparatus and was found to be successful in visualising the porosity evolution due to suffusion. / <p>QC 20161006</p>
|
2 |
CONTRIBUTIONS TO THE HYDRAULICS OF FLOW-THROUGH ROCKFILL STRUCTURESRoshanfekr, Ali 23 September 2013 (has links)
Non-overflow flow-through rockfill structures are river engineering elements used to attenuate and delay inflow hydrographs. They represent expedient places to deposit rather enormous quantities of waste rock at mountainous mine sites. Their application has become so common that matters of safety regarding their design have been laid out in Section 8.5 of the Canadian Dam Safety Guidelines (CDA 2007). The research described herein was directed at investigating the different aspects of the hydraulics of these flow-through rockfill structures.
In order to assess the potential for an unraveling failure of flow-through rockfill dams, a systematic study of the hydraulic design of these structures was conducted and the non-linear nature of flow through these structures was dealt with using a p-LaPlacian-like partial differential equation. Subsequently, factors of safety against this type of failure are presented for a range of downstream slopes, thus showing the unsafe combinations of embankment slope and particle diameter.
Three different index gradients within the toe of such structures were investigated. In this regard, the gradient most suitable for independently computing the height of the point of first flow emergence on the downstream face is examined and a method for independently computing the variation in hydraulic head within that vertical (which allows for the toe of the structure to be isolated) is presented. An additional gradient that allows for the independent estimation of the default tailwater depth is proposed.
In order to provide better tools to assess the behavior of these embankments at the toe, laboratory and analytical studies were undertaken. In this regard, the hydraulics associated with the zone of the downstream toe were studied. The depth variation of the seepage-face was computationally modeled, and two approaches for solving the spatially varied flow (SVF) condition problem within the toe region undertaken. The results show that a dual linear variation in depth can be used to good accuracy, without inducing any unrealistic exit gradients in the zone of primary concern with respect to unraveling.
It is hoped that these techniques and computational tools provided herein will aid in facilitating the design and assessment of these flow-through rockfill structures.
|
Page generated in 0.0653 seconds