91 |
Hydrodynamics of a multiple tidal inlet system : Katama Bay, Martha's Vineyard, MAOrescanin, Mara S. M. (Mara Ssphia Morgenstern) January 2015 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 87-92). / Observations, theoretical models, and a numerical model (ADCIRC) are used to investigate the effects of tides, waves, bay bathymetry, and changing inlet geometry on the hydrodynamics of the multiple-inlet Katama system, Martha's Vineyard, MA. Momentum fluxes from breaking waves drive water into the inlet, nearly stopping the 2 m/s ebb currents during a hurricane. The evolving morphology of Katama Inlet has a dominant effect on tidal distortion and bay circulation. As Katama inlet lengthened, narrowed, and shoaled between 2011 and 2014, the relative effects of friction (observed and simulated) increased greatly, resulting in reduced circulation energy, an increase in the M6 tidal constituent, and changes in velocity asymmetries that are consistent with an evolution from flood to ebb dominance. The effects of changing inlet parameters (e.g., inlet geometry, bay bathymetry, friction, tidal forcing) are quantified via a lumped element model that accounts for the presence of a shallow flood shoal that limits flow from the ocean into the bay. As the difference in depth between inlet and flood shoal increases, the amplitude and phase of the incoming tide are increasingly modified from predictions without a flood shoal, and flows into the bay are further hindered. / by Mara S. M. Orescanin. / Ph. D.
|
92 |
Numerical modeling of cross-shore sediment transport and sandbar migrationCambazoglu, Mustafa Kemal 19 August 2009 (has links)
Nearshore processes on barred beaches are studied with a process-based numerical model. The two major goals of the study are to expand the body of knowledge about nearshore processes on barred beaches gaining a better understanding of the physical mechanisms affecting bar migration events and to enhance the numerical model in order to accomplish realistic simulations of bar migration events on storm time scales. The numerical model is used to study the effect of physical processes on the hydrodynamics and morphodynamics in the nearshore environment. The numerical model system consists of a linear spectral refraction-diffraction model, REF/DIF S, a quasi-3D nearshore circulation module, SHORECIRC, energetics-based sediment transport models, and a morphological evolution model. A laboratory experiment with an offshore bar migration case followed by an onshore bar migration case is used for modeling purposes and verifications. A number of enhancements are made to the wave and circulation modules of the numerical model system specifically for simulations on barred beaches. The model modifications and enhancements are: a combined breaking wave parameter with a spatial variation in the wave model, a method accounting for breaking wave persistence in the wave model, a method accounting for the new breaker roller lag in the wave model, the dynamic pressure component in the radiation stress forcing, a roller contribution with different depth variation options for the short wave forcing in the circulation model, wave height instead of water depth as the turbulent length scale in the eddy viscosity calculations in the circulation model, and a slope term for the default sediment transport formula. The effect of surface shape parameter and the roller face angle on radiation stress and mean water level predictions are investigated. In reality, the organized wave energy is transferred to roller development over a transition distance and the roller does not immediately contribute to the radiation stresses; therefore, showing the importance of the roller lag mechanism for mean water level predictions. The cross-shore variation of the vertical momentum balance is studied to observe the variation of forcing agents of the undertow current. The cross-shore pressure gradient is the most dominant forcing term affecting the depth structure of the undertow current. The effect of different depth variations of the roller contribution to the short wave forcing on the undertow current is investigated. The mechanism accounting for breaking wave persistence and the mechanism accounting for the roller lag are shown to be important for predictions of the undertow currents on barred beaches. The skewed wave orbital velocities are introduced to the linear wave model by an empirical parametrization method and are found to contribute strongly to the onshore bar migration. The enhancements made to the wave dissipation and roller are found to significantly affect the predicted migration of the bar as well as the maintainance of the trough.
|
93 |
Longshore currents near Cape Hatteras, NCSmallegan, Stephanie M. 06 April 2012 (has links)
As part of a beach erosion field experiment conducted at Cape Hatteras, NC in February 2010, this study focuses on quantifying longshore currents, which are the basic mechanism that drives longshore sediment transport. Using video imagery, the longshore currents in view of a video camera are estimated with the Optical Current Meter technique and the nearshore morphology is estimated by analyzing breaking wave patterns in standard deviation images.
During a Nor‟easter storm event on February 12 and 13, 2010, the video longshore currents are compared to in situ data and it is found that the currents are most affected by the angle of incidence of incoming waves, increasing in magnitude as the angle becomes more oblique due to a larger component of radiation stress forcing in the longshore direction. The magnitude of the radiation stress forcing, which is at least an order of magnitude larger than the surface wind stress, increases as wave height increases or tide level decreases, which causes more wave breaking to occur. The normalized standard deviation images show wave breaking occurring at an inshore and offshore location, corresponding closely to the locations of an inner and outer bar indicated in survey data.
Using two profiles from the survey data, one profile that intersects a trough and one that intersects a terrace, the video currents are also compared to currents simulated in one-dimension using the circulation module, SHORECIRC, and the wave module, REF/DIF-S, as part of the NearCoM system. Although the simulated currents greatly underpredict the video currents when the flow is only driven by radiation stresses, a mean water level difference between the two profiles creates a longshore pressure gradient. Superimposing a pressure gradient forcing term into the longshore momentum balance that assumes an equilibrium state of the flow, the magnitude of the simulated currents are much larger than the magnitude of the video estimated currents. Using analytical solutions of simplified forms of the mass and momentum equations to determine the effects of accelerations on the flow, it is seen that the acceleration term greatly affects the flow due to the relatively large mean water level difference that acts over a relatively short distance. Therefore, the pressure gradient forcing term is modified to include the effects of accelerations. By including the two-dimensional effects of the acceleration in the one-dimensional model through the modified pressure gradient, the quasi two-dimensional model simulated currents are very similar to the video estimated currents, indicating that the currents observed in the video may be pressure gradient driven.
|
94 |
Internal sedimentology of washover deposits in Tai Long Wan, HongKongChik, Shun-wah., 戚舜華. January 2010 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
|
95 |
Late Devensian and Holocene relative sea level changes on the Isle of Skye, ScotlandSelby, Katherine January 1997 (has links)
Five coastal sites have been studies on the Isle of Skye to investigate Late Devensian and Holocene relative sea level changes. In the field, detailed stratigraphical work, geomorphological mapping and levelling were undertaken and representatives cores were sampled. Detailed pollen and diatom analyses were undertaken in the laboratory and samples were submitted for radiocarbon assay where distinct pollen, diatom or lithostratigraphical changes were recorded. Loss on ignition analysis was also undertaken to ascertain the carbon content of the samples. The investigations have revealed that during the Late Devensian marine transgressions were experienced at two sites in southern Skye. These are thought to relate to readvances of the ice that arrested the isostatic recovery of the land, caused renewed isostatic depression and upon deglaciation, allowed marine waters to penetrate the sites. At Inver Aulavaig the transgression is thought to relate to the Wester Ross Readvance recorded in Wester Ross, Coll and Tiree and at Point of Sleat the transgression is thought to relate the Loch Lomond Readvance recorded extensively in Scotland. Relative sea level at Point of Sleat (southern Skye) then fell below an altitude of 4.13mOD at 10460+-50BP and remained low during the early Holocene until the Main Postglacial Transgression occurred. This transgression is recorded at three of the sites: at Inver Aulavaig (southern Skye) at 8850+-70BP where it had attained an altitude of at least 5.10mOD, at Peinchorran (eastern Skye) where it is thought to have been underway by 7980+-BP and attained an altitude of 4.49mOD and at Talisker Bay (western Skye) at 7790+-100BP where it had attained an altitude of -2.18mOD. At Ardmore Bay (northern Skye) it is thought that the Main Postglacial Transgression did not reach an altitude of 3.34mOD. It is possible that barrier formation at some of the sites accompanied the early states of the Mian Postglacial Transgression. It is thought that regression of the sea occurred between circa 6600 BP and circa 5400 BP and remained low until circa 4200 BP when a later rise in relative sea level took place at Peinchorran attaining a maximum altitude of 4.90mOD. A late Holocene transgression is also recorded at Point of Sleat at between circa 3800 BP and circa 2900 BP where it attained an altitude of greater than 4.13mOD and at Inver Aulavaig after circa 3200 BP where it attained an altitude of between 5.10-6.01mOD. It is unclear whether this episode of high relative sea level represents the diachronous nature of one late Holocene transgression or several fluctuations in relative sea level during the late Holocene. Following the late Holocene transgression, relative sea level fell until the present day. Comparison of the data obtained from Skye with the isobase maps and rheological models suggests that the isobases for the Main Lateglacial Shoreline (Firth et al., 1993) show a good fit in age and altitude but the rheological model of Lambeck (1993b) for 10500 BP requires modification. The isobases for the Main Postglacial Shoreline appear to lie circa 4m too high for the sites studied on Skye and the isobases produced for a late Holocene shoreline appear to be greatly in error (Firth et al., 1993). It is possible that the build up of ice during the Loch Lomond Stadial may have had a greater effect on crustal movements than previously thought and this may account for discrepancies identified in the isobase maps. The study of isolation basins and back-barrier environments has allowed an assessment of their potential in recording relative sea level changes. The use of isolation basins in areas devoid of estuarine sedimentation has been particualrly demonstrated. The vegetation reconstruction undertaken, suggests that variations do occur in coastal locations compared to sites further inland, although these are subtle. The dates obtained for the increase in taxa such as 'Corylus avellana' and 'Alnus' and the recording of anthropogenic indicators on the vegetation, agree with those previously obtained for Skye. The use of pollen analysis in verifying the radiocarbon dates obtained, particualrly for the Late Devensian, has been recognised and, combined with diatom analysis, has provided a comprehensive database from which to reconstruct past relative sea levels.
|
96 |
Factors influencing sediment re-suspension and cross-shore suspended sediment flux in the frequency domainKularatne, Kottabogoda Angidigedera Samantha Rangajeewa January 2006 (has links)
[Truncated abstract] With rapidly increasing population densities along coastlines and rising global sea levels, coastal protection has become a major concern for coastal communities. Predicting sediment transport in nearshore regions, however, is one of the most challenging tasks faced by coastal researchers in designing coastal structures or beach nourishment schemes. Although nearshore sediment transport mainly occurs in the longshore direction, cross-shore sediment transport is crucial in determining the shoreline evolution and beach morphology . . . This study investigated the factors influencing sediment re-suspension and cross-shore suspended sediment flux in the frequency domain through a series of field measurements conducted at several different locations and a numerical model. Only oscillatory flow components were examined and the mean flow components were not considered. Although many different factors such as cross-shore location with respect to breaker line, significant wave height to water depth ratio (Hs/h), normalised horizontal velocity skewness (<u³>/‹u²›³/²), median grain size (d50), breaker type, and wave groupiness appeared to influence the magnitude of cross-shore suspended sediment flux, bed ripples was identified as the major contributing factor in changing the direction of suspended sediment flux due to incident swell waves. Moreover, the direction changed significantly with ripple type. High frequency measurements, obtained to examine the influence of turbulent kinetic energy (TKE) on higher sediment suspension events observed under wave groups indicated that higher TKE was generated at the seabed by approaching wave groups, which in turn resulted in higher suspension events.°1
|
97 |
A Process-Based Model for Beach Profile EvolutionDemir, Huseyin 17 September 2007 (has links)
Beach profile models predict the changes in bathymetry along a line perpendicular to the shoreline. These models are used to forecast bathymetric changes in response to storms, sea level rise or human activities such as dredging and beach nourishment. Process-based models achieve this by simulating the physical processes that drive the sediment transport as opposed to behavior models which simulate observed profile changes without resolving the underlying processes. Some of these processes are wave shoaling and breaking, boundary layer streaming, and offshore-directed undertow currents. These hydrodynamic processes control the sediment processes such as sediment pick-up from the bottom, diffusion of the sediment across the water column and its advection with waves and currents.
For this study, newly developed sediment transport and boundary layer models were coupled with existing models of wave transformation, nearshore circulation and bathymetry update, to predict beach profile changes. The models covered the region from the dry land to a depth of 6-8 meters, spanning up to 500 meters in the cross-shore direction. The modeling system was applied at storm time scales, extending from a couple of hours to several days. Two field experiments were conducted at Myrtle Beach, SC, involving the collection of wave, current and bathymetric data as a part of this study. The results were used to calibrate and test the numerical models along with data from various laboratory studies from the literature.
The sediment transport model computes the variation of sediment concentrations over a wave period and over the water column, solving the advection-diffusion equation using the Crank-Nicholson finite-difference numerical scheme. Using a new approach, erosion depth thickness and sediment concentrations within the bed were also predicted. The model could predict sediment transport rates for a range of conditions, within a factor of two. It successfully computed the sediment concentration profile over the water column and within the bed and its variation throughout a wave period. Erosion depth and sheet flow layer thickness were also predicted reasonably well.
Wave heights across the profile were predicted within ten percent when the empirical wave breaking parameter was tuned appropriately. Mean cross-shore velocities contain more uncertainty, even after tuning. The importance of capturing the location of the maximum, near-bottom, cross-shore velocity when predicting bar behavior was shown. Bar formation, erosion, accretion, onshore and offshore bar movement were all computed with the model successfully
|
98 |
Relative sea-level rise and the development of channel-fill and shallow-water sequences on Cape Cod, MassachusettsGutierrez, Benjamin Thomas January 1999 (has links)
Thesis (M.S.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (leaves 60-63). / Channel-fill sediments located in shallow-water off the south shore of Cape Cod, Massachusetts, provide a record of the late-Pleistocene and Holocene geological evolution in a post-glacial setting. Though conventionally difficult to sample adequately and anticipated to have low preservation potential, channel-fill sequences record in some detail differing relative sea-level and sedimentation processes. Two distinct channel-fill sequences record differing sequence stratigraphies, and hence different origins and post glacial histories. These sequences have accumulated in channels eroded into two different late-Pleistocene glacial units. The first fill-type was encountered in channels on the upper portions of the channel network in northern half of the study site. Channels in this portion of the channel system were incised into the late-Pleistocene glacial outwash substrate by spring sapping Uchupi and Oldale, 1994. The channel-fill sequences are comprised of a transgressive systems tract composed of a consistent sequence of coastal embayment and shoreline facies that have succeeded one another in response to Holocene relative sea-level rise. As relative sea-level flooded these paleo-channels, marsh environments were established in response to rising relative sea-level. With continued sea-level rise, the marsh environments migrated farther up channel. The exposed paleo-channels continued to flood, accommodating quiet water coastal embayments, likely protected from wave action by barrier beaches located more seaward. As relative sea-level rise continued, the coastline was driven landward over regions within the paleo-channels that formerly accommodated marsh and embayment sedimentation. The landward migration of the coastline was indicated by beach and barrier facies that covered the fine grained coastal embayment sediments. With further relative sea-level rise, beach and barrier settings were eroded as the shoreface migrated farther landward and nearshore marine deposition by wave and tidal flows ensued. Sedimentary environments similar to those recorded in the channels are found in modern coastal embayments on the south shore of Cape Cod. The second channel-fill type, which forms part of the southern and western portion of the channel network is more difficult to relate to the previously described sequence. The channels that contain fill were not adequately defined in this survey but were probably incised during the late-Pleistocene in response to ice melting and retreat. The sediments that make up this channel-fill are composed mainly of late-Pleistocene glaciolacustrine silts and clays. Sediments that make up the Holocene transgressive systems tract are limited to the upper meter of this channel sequence. They are composed of two sand units that reflect Holocene beach and nearshore sedimentation. The absence of coastal embayment and other paralic facies from the systems tract suggests that these channels did not accommodate protected embayments or that these sediments were not well preserved during the submergence of this region. Changes in the channel orientation or in the rate of relative sea-level rise may have contributed to this difference in sediment fill. / by Benjamin Thomas Gutierrez. / M.S.
|
99 |
The Erosion of Coastal Sediment and Regeneration of Rhizophora mangle Following Anthropogenic Disturbance on Turneffe Atoll, BelizeHayden, Heather Lyn 28 May 2015 (has links)
As communities and managers become aware of the long-term impacts of mangrove loss, estimated at 1-2% per year, interest in sediment erosion and mangrove rehabilitation has increased substantially. In this thesis project I 1) examine erosion rates within coastal fringing Rhizophora mangle ecosystems following mangrove clearing and compare these rates to accretion rates in intact mangroves; and 2) investigate the abiotic factors influencing mangrove seedling survival and regeneration of naturally colonizing R. mangle, in historic mangrove habitat after anthropogenic clearing.
Differences in erosion were compared between patches of open-coast intact and anthropogenically cleared R. mangle to quantify the sediment trapping function provided by mangroves and its loss following clearing over a 24 month period. Growth rates of mangrove seedlings in intact forest were compared to seedlings in cleared areas. Seedling growth indicators were measured on 100 seedlings at five sites (50 in the intact and 50 in the cleared areas). To examine the limiting factors on seedling growth rates, nutrient addition and wave protection treatments were applied to seedlings in three disturbed areas.
Sites within intact mangroves had sediment accretion (M= +3.83 mm) while areas cleared of mangroves had sediment erosion (M= -7.30 mm). Seedling growth (height) over the 2 year study period significantly differed between intact mangrove (M = 15.6 cm) and cleared (M = 10.24 cm) areas. Seedling mortality from the cleared areas (31%) differed from the intact areas (13%). Average seedling growth (height) was: greater with both nutrient/wave (M = 18.4 cm) and nutrient (M = 17.65 cm) treatments compared to controls (M = 10.8 cm), which suggests that providing nutrients and/or wave protection result in growth outputs comparable to seedlings found in intact mangroves.
This study may prove to be useful in identifying areas that are most vulnerable to erosion following mangrove removal and ideal location of restoration following mangrove removal. Areas cleared of mangroves can lead to intensified erosion in areas where fringing reefs are not continuous. When managers are determining areas to focus resources for restoration, focusing on areas with nutrient rich habitat may result in higher survival rates and growth outputs.
|
100 |
An evaluation of North Carolina's mandatory oceanfront setback policy: a case study of Nags HeadThomas, Claire H. 10 July 2009 (has links)
North Carolina implemented a statewide mandatory oceanfront 30-year setback on June 1, 1979. This research evaluated the effectiveness of the setback policy in the town of Nags Head in protecting private property from ocean hazards, preventing the encroachment of structures on public beaches, and minimizing public costs of inappropriately-sited development. To date, no process has been established for evaluating the effectiveness of the setback program. This research is proposed as one way to evaluate the success of oceanfront setbacks on a local basis.
The town of Nags Head, located on Bodie Island, was selected for analysis because it represents one of the most developed areas of the Outer Banks, and has witnessed significant growth over the past twenty years. Due to Bodie Island’s northeast orientation, Nags Head has experienced severe erosion in many areas, stemming in part from northeasters and other coastal storms.
The research involved collecting data on structures built since June 1, 1979 within the study area. Oceanfront setbacks from the vegetation line at the time of construction were obtained from survey measurements, and field measurements taken in January and February 1994 determined the present location of the structure relative to the vegetation line. Site-specific erosion rates were then determined and compared to the long-term rate used by the Division of Coastal Management in the delineating oceanfront setback per lot. Predictions of the time until each structure would be located within the zone of imminent collapse, as defined by FEMA, were made based on both long-term erosion rates and actual rates occurring over each structure’s lifetime. These predictions were then compared to the years remaining until each structure was 25 years old (30-year setback less the 5-year zone of imminent collapse), and determinations of setback success or failure were made on a per lot basis.
Results of the analysis yielded low setback success rates within the study area, raising doubts about the ability of long-term erosion rate setbacks to sufficiently protect oceanfront property in areas frequented by severe coastal storms. The research supports the continuation of the oceanfront setback program, but discusses policy shortcomings, suggests possible policy alternatives, and recommends topics for further research regarding oceanfront setbacks. / Master of Science
|
Page generated in 0.0833 seconds