• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local Rigidity of Some Lie Group Actions / Lokal rigiditet för några Liegruppverkan

Sandfeldt, Sven January 2020 (has links)
In this paper we study local rigidity of actions of simply connected Lie groups. In particular, we apply the Nash-Moser inverse function theorem to give sufficient conditions for the action of a simply connected Lie group to be locally rigid. Let $G$ be a Lie group, $H < G$ a simply connected subgroup and $\Gamma < G$ a cocompact lattice. We apply the result for general actions of simply connected groups to obtain sufficient conditions for the action of $H$ on $\Gamma\backslash G$ by right translations to be locally rigid. We also discuss some possible applications of this sufficient condition / I den här texten så studerar vi lokal rigiditet av gruppverkan av enkelt sammanhängande Liegrupper. Mer specifikt, vi applicerar Nash-Mosers inversa funktionssats för att ge tillräckliga villkor för att en gruppverkan av en enkelt sammanhängande grupp ska vara lokalt rigid. Låt $G$ vara en Lie grupp, $H < G$ en enkelt sammanhängande delgrupp och $\Gamma < G$ ett kokompakt gitter. Vi applicerar resultatet för generella gruppverkan av enkelt sammanhängande grupper för att få tillräckliga villkor för att verkan av $H$ på $\Gamma\backslash G$ med translationer ska vara lokalt rigid. Vi diskuterar också några möjliga tillämpningar av det tillräckliga villkoret.

Page generated in 0.0647 seconds