Spelling suggestions: "subject:"evolutionary"" "subject:"coevolution""
11 |
Souběžné učení v koevolučních algoritmech / Colearning in Coevolutionary AlgorithmsWiglasz, Michal January 2015 (has links)
Cartesian genetic programming (CGP) is a form of genetic programming where candidate programs are represented in the form of directed acyclic graphs. It was shown that CGP can be accelerated using coevolution with a population of fitness predictors which are used to estimate the quality of candidate solutions. The major disadvantage of the coevolutionary approach is the necessity of performing many time-consuming experiments to determine the best size of the fitness predictor for the particular task. This project introduces a new fitness predictor representation with phenotype plasticity, based on the principles of colearning in evolutionary algorithms. Phenotype plasticity allows to derive various phenotypes from the same genotype. This allows to adapt the size of the predictors to the current state of the evolution and difficulty of the solved problem. The proposed algorithm was implemented in the C language and optimized using SSE2 and AVX2 vector instructions. The experimental results show that the resulting image filters are comparable with standard CGP in terms of filtering quality. The average speedup is 8.6 compared to standard CGP. The speed is comparable to standard coevolutionary CGP but it is not necessary to experimentally determine the best size of the fitness predictor while applying coevolution to a new, unknown task.
|
12 |
AI-Enhanced Methods in Autonomous Systems: Large Language Models, DL Techniques, and Optimization Algorithmsde Zarzà i Cubero, Irene 23 January 2024 (has links)
Tesis por compendio / [ES] La proliferación de sistemas autónomos y su creciente integración en la vida humana cotidiana han abierto nuevas fronteras de investigación y desarrollo. Dentro de este ámbito, la presente tesis se adentra en las aplicaciones multifacéticas de los LLMs (Large Language Models), técnicas de DL (Deep Learning) y algoritmos de optimización en el ámbito de estos sistemas autónomos. A partir de los principios de los métodos potenciados por la Inteligencia Artificial (IA), los estudios englobados en este trabajo convergen en la exploración y mejora de distintos sistemas autónomos que van desde sistemas de platooning de camiones en sistemas de comunicaciones Beyond 5G (B5G), Sistemas Multi-Agente (SMA), Vehículos Aéreos No Tripulados (UAV), estimación del área de incendios forestales, hasta la detección temprana de enfermedades como el glaucoma.
Un enfoque de investigación clave, perseguido en este trabajo, gira en torno a la implementación innovadora de controladores PID adaptativos en el platooning de vehículos, facilitada a través de la integración de los LLMs. Estos controladores PID, cuando se infunden con capacidades de IA, ofrecen nuevas posibilidades en términos de eficiencia, fiabilidad y seguridad de los sistemas de platooning. Desarrollamos un modelo de DL que emula un controlador PID adaptativo, mostrando así su potencial en las redes y radios habilitadas para IA. Simultáneamente, nuestra exploración se extiende a los sistemas multi-agente, proponiendo una Teoría Coevolutiva Extendida (TCE) que amalgama elementos de la dinámica coevolutiva, el aprendizaje adaptativo y las recomendaciones de estrategias basadas en LLMs. Esto permite una comprensión más matizada y dinámica de las interacciones estratégicas entre agentes heterogéneos en los SMA.
Además, nos adentramos en el ámbito de los vehículos aéreos no tripulados (UAVs), proponiendo un sistema para la comprensión de vídeos que crea una log de la historia basada en la descripción semántica de eventos y objetos presentes en una escena capturada por un UAV. El uso de los LLMs aquí permite razonamientos complejos como la predicción de eventos con mínima intervención humana. Además, se aplica una metodología alternativa de DL para la estimación del área afectada durante los incendios forestales. Este enfoque aprovecha una nueva arquitectura llamada TabNet, integrada con Transformers, proporcionando así una estimación precisa y eficiente del área.
En el campo de la salud, nuestra investigación esboza una metodología exitosa de detección temprana del glaucoma. Utilizando un enfoque de entrenamiento de tres etapas con EfficientNet en imágenes de retina, logramos una alta precisión en la detección de los primeros signos de esta enfermedad.
A través de estas diversas aplicaciones, el foco central sigue siendo la exploración de metodologías avanzadas de IA dentro de los sistemas autónomos. Los estudios dentro de esta tesis buscan demostrar el poder y el potencial de las técnicas potenciadas por la IA para abordar problemas complejos dentro de estos sistemas. Estas investigaciones en profundidad, análisis experimentales y soluciones desarrolladas arrojan luz sobre el potencial transformador de las metodologías de IA en la mejora de la eficiencia, fiabilidad y seguridad de los sistemas autónomos, contribuyendo en última instancia a la futura investigación y desarrollo en este amplio campo. / [CA] La proliferació de sistemes autònoms i la seua creixent integració en la vida humana quotidiana han obert noves fronteres de recerca i desenvolupament. Dins d'aquest àmbit, la present tesi s'endinsa en les aplicacions multifacètiques dels LLMs (Large Language Models), tècniques de DL (Deep Learning) i algoritmes d'optimització en l'àmbit d'aquests sistemes autònoms. A partir dels principis dels mètodes potenciats per la Intel·ligència Artificial (IA), els estudis englobats en aquest treball convergeixen en l'exploració i millora de diferents sistemes autònoms que van des de sistemes de platooning de camions en sistemes de comunicacions Beyond 5G (B5G), Sistemes Multi-Agent (SMA), Vehicles Aeris No Tripulats (UAV), estimació de l'àrea d'incendis forestals, fins a la detecció precoç de malalties com el glaucoma.
Un enfocament de recerca clau, perseguit en aquest treball, gira entorn de la implementació innovadora de controladors PID adaptatius en el platooning de vehicles, facilitada a través de la integració dels LLMs. Aquests controladors PID, quan s'infonen amb capacitats d'IA, ofereixen noves possibilitats en termes d'eficiència, fiabilitat i seguretat dels sistemes de platooning. Desenvolupem un model de DL que emula un controlador PID adaptatiu, mostrant així el seu potencial en les xarxes i ràdios habilitades per a IA. Simultàniament, la nostra exploració s'estén als sistemes multi-agent, proposant una Teoria Coevolutiva Estesa (TCE) que amalgama elements de la dinàmica coevolutiva, l'aprenentatge adaptatiu i les recomanacions d'estratègies basades en LLMs. Això permet una comprensió més matissada i dinàmica de les interaccions estratègiques entre agents heterogenis en els SMA.
A més, ens endinsem en l'àmbit dels Vehicles Aeris No Tripulats (UAVs), proposant un sistema per a la comprensió de vídeos que crea un registre de la història basat en la descripció semàntica d'esdeveniments i objectes presents en una escena capturada per un UAV. L'ús dels LLMs aquí permet raonaments complexos com la predicció d'esdeveniments amb mínima intervenció humana. A més, s'aplica una metodologia alternativa de DL per a l'estimació de l'àrea afectada durant els incendis forestals. Aquest enfocament aprofita una nova arquitectura anomenada TabNet, integrada amb Transformers, proporcionant així una estimació precisa i eficient de l'àrea.
En el camp de la salut, la nostra recerca esbossa una metodologia exitosa de detecció precoç del glaucoma. Utilitzant un enfocament d'entrenament de tres etapes amb EfficientNet en imatges de retina, aconseguim una alta precisió en la detecció dels primers signes d'aquesta malaltia.
A través d'aquestes diverses aplicacions, el focus central continua sent l'exploració de metodologies avançades d'IA dins dels sistemes autònoms. Els estudis dins d'aquesta tesi busquen demostrar el poder i el potencial de les tècniques potenciades per la IA per a abordar problemes complexos dins d'aquests sistemes. Aquestes investigacions en profunditat, anàlisis experimentals i solucions desenvolupades llançen llum sobre el potencial transformador de les metodologies d'IA en la millora de l'eficiència, fiabilitat i seguretat dels sistemes autònoms, contribuint en última instància a la futura recerca i desenvolupament en aquest ampli camp. / [EN] The proliferation of autonomous systems, and their increasing integration with day-to-day human life, have opened new frontiers of research and development. Within this scope, the current thesis dives into the multifaceted applications of Large Language Models (LLMs), Deep Learning (DL) techniques, and Optimization Algorithms within the realm of these autonomous systems. Drawing from the principles of AI-enhanced methods, the studies encapsulated within this work converge on the exploration and enhancement of different autonomous systems ranging from B5G Truck Platooning Systems, Multi-Agent Systems (MASs), Unmanned Aerial Vehicles, Forest Fire Area Estimation, to the early detection of diseases like Glaucoma.
A key research focus, pursued in this work, revolves around the innovative deployment of adaptive PID controllers in vehicle platooning, facilitated through the integration of LLMs. These PID controllers, when infused with AI capabilities, offer new possibilities in terms of efficiency, reliability, and security of platooning systems. We developed a DL model that emulates an adaptive PID controller, thereby showcasing its potential in AI-enabled radio and networks. Simultaneously, our exploration extends to multi-agent systems, proposing an Extended Coevolutionary (EC) Theory that amalgamates elements of coevolutionary dynamics, adaptive learning, and LLM-based strategy recommendations. This allows for a more nuanced and dynamic understanding of the strategic interactions among heterogeneous agents in MASs.
Moreover, we delve into the realm of Unmanned Aerial Vehicles (UAVs), proposing a system for video understanding that employs a language-based world-state history of events and objects present in a scene captured by a UAV. The use of LLMs here enables open-ended reasoning such as event forecasting with minimal human intervention. Furthermore, an alternative DL methodology is applied for the estimation of the affected area during forest fires. This approach leverages a novel architecture called TabNet, integrated with Transformers, thus providing accurate and efficient area estimation.
In the field of healthcare, our research outlines a successful early detection methodology for glaucoma. Using a three-stage training approach with EfficientNet on retinal images, we achieved high accuracy in detecting early signs of this disease.
Across these diverse applications, the core focus remains: the exploration of advanced AI methodologies within autonomous systems. The studies within this thesis seek to demonstrate the power and potential of AI-enhanced techniques in tackling complex problems within these systems. These in-depth investigations, experimental analyses, and developed solutions shed light on the transformative potential of AI methodologies in improving the efficiency, reliability, and security of autonomous systems, ultimately contributing to future research and development in this expansive field. / De Zarzà I Cubero, I. (2023). AI-Enhanced Methods in Autonomous Systems: Large Language Models, DL Techniques, and Optimization Algorithms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202201 / Compendio
|
13 |
遺傳演算法在演化賽局上之應用:策略生態之模擬、計算與分析倪志琦 Unknown Date (has links)
本論文主要是在agent-based計算經濟體系下,利用Holland(1975)所提的遺傳演算法(genetic algorithms)作為計算工具,分別探討連鎖店賽局及寡占市場廠商價格策略的生態演化。
在連鎖店賽局的研究中,藉由agent-based計算經濟分析掠奪性定價的特性,並進一步探討參賽者價格策略的共演化(co-evolutionary)特性,及多元均衡賽局中均衡移轉的動態過程。針對賽局中不同的不確定性進行模擬,結果顯示廠商長期總合行為是否穩定,和賽局中的不確定程度有相當的關聯。另外,弱獨占者和潛在競爭者的價格策略存在著共演化特性。在此演化賽局中,Nash均衡雖非穩定均衡解,但卻最常浮現在長期總合行為中。因此,Nsah均衡對agent-based演化賽局的結果而言,相當具有參考價值。在特定的不確定程度下,長期總合行為似乎只在某些特定的Nash均衡中徘徊。這些移轉途徑並不具有對稱性,甚至移轉速度也非對稱。本研究所呈現的演化結果跳脫一般對均衡的觀念,展現出傳統理論所無法預知的共演化特性,並呈現出非對稱的吸引環。
此外,同樣在Agent-based計算經濟下探討寡占市場廠商策略生態。本研究首先闡明N參賽者囚犯兩難重複賽局和N廠商寡占賽局之間的異同,經由寡占賽局廠商償付矩陣(payoff matrix)的狀態相依馬可夫移轉矩陣( state-dependent Markov transition matrix)性質,說明N廠商寡占賽局和N參賽者囚犯兩難重複賽局的差異。其次,透過三家廠商寡占賽局的模擬實驗,以遺傳演算法建構參賽廠商的適應性行為,分別以寡占市場生態上的表現型(phenotypes)和基因型(genotype)進行分析。20次模擬結果所呈現的最終市場狀態相當分歧,有形成吸引環的三廠商寡占市場、有收斂到價格戰的三廠商寡占市場。另外也成功的模擬出三廠商寡占市場演化至雙佔市場、甚或獨占市場的過程。但是,在眾多模擬中並沒有發現持續的勾結定價狀態,反而掠奪性價格是較主要的價格策略。這些結果相對於實際經濟社會中的寡占市場,給予一個活潑生動的範例。 / Recently, genetic algorithms have been extensively applied to modeling evolution game in agent-based computational economic. While these applications advance our understanding of evolution game, they have generated some new phenomena that have not been well treated in conventional game theory.
In the first topic, we shall systemize the study of one of these new phenomena, namely, coevolutionary instability. We exemplify the basic properties of coevolutionary instability by the chain store game, which is the game frequently used to study the role of reputation effects in economics. In addition, we point out that, while, due to uncertainty effects, Nash equilibria can no longer be stable, and they can still help us predict the dynamic process of the game. In particular, we can see that the dynamic process of the game is well captured by a few Nash equilibria and the transition among them. A careful study can uncover several interesting patterns and we show the impact of uncertainty on these patterns.
In the second topic, the relation between the N-person IPD game and the N-person oligopoly game is rigorously addressed. Our analytical framework shows that due to the path-dependence of the payoff matrix of the oligopoly game, the two games in general are not close in spirit. We then further explore the significance of the path-dependence property to the rich ecology of oligopoly from an evolutionary perspective. More precisely, we simulated the evolution of a 3-person oligopoly game, and showed that the rich ecology of oligopoly can be exhibited by modeling the adaptive behavior of oligopolists with genetic algorithms. The emergent behavior of oligopolists are presented and analyzed. We indicate how the path-dependence nature may shed light on the phenotypes and genotypes coming into existence.
|
Page generated in 0.0858 seconds