• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

What Determines Spatial Strategy Choice In Human Spatial Learning In A Computer-Analog Of The Morris Water Maze?

Hardt, Oliver January 2005 (has links)
Cognitive Map Theory (O’Keefe & Nadel, 1978) posits that spatial behavior can reflect locale or taxon strategies. Only locale strategies depend on cognitive maps, and learning recruited by these strategies is unlike associative learning (e.g., Rescorla & Wagner, 1972; Mackintosh, 1975), which is prevalent in the taxon system. Associative learning phenomena like the blocking effect (Kamin, 1969) should therefore not occur during acquisition of cognitive maps. Contrary to this prediction, blocking effects have been demonstrated in spatial learning (e.g., Biegler & Morris, 1999; Chamizo, Sterio, & Mackintosh, 1985; Hamilton & Sutherland, 1999), and have been generally interpreted as evidence against cognitive map theory. Here we provide evidence suggesting that taxon and not locale strategies were promoted in these experiments, and we ask which factors determine whether taxon or locale strategies control spatial behavior in a computer-implementation of a widely used spatial task (Morris Water Maze; Morris, 1981). We isolated two factors relevant for spatial strategy choice in human spatial learning that are both related to the individual’s preexisting knowledge, namely conceptual knowledge about the distal cues, and knowledge about the task affordances. The blocking effect was used as an index for locale or taxon learning. We found that taxon strategies were more likely for abstract distal cues, while concrete cues promoted locale strategies – blocking was present for the former, but not the latter. When subjects were aware that the distal cues predicted locations, locale, and not taxon strategies were recruited, such that blocking was not observed. Spatial strategy choice appears to be largely driven by interindividual differences, and can therefore not be easily predicted a priori. Our findings cannot be explained by associative learning theories, but provide strong support for cognitive map theory and the position that multiple behavioral systems exist in the brain.

Page generated in 0.5689 seconds