1 |
Strong Localization in Disordered Media: Analysis of the Backscattering ConeDelgado, Edgar 06 1900 (has links)
A very interesting effect in light propagation through a disordered system is Anderson
localization of light, this phenomenon emerges as the result of multiple scattering of
waves by electric inhomogeneities like spatial variations of index of refraction; as the
amount of scattering is increased, light propagation is converted from quasi-diffusive
to exponentially localized, with photons confined in a limited spatial region characterized
by a fundamental quantity known as localization length. Light localization is
strongly related to another interference phenomenon emerged from the multiple scattering
effect: the coherent backscattering effect. In multiple scattering of waves, in
fact, coherence is preserved in the backscattering direction and produces a reinforcement
of the field flux originating an observable peak in the backscattered intensity,
known as backscattering cone. The study of this peak provide quantitative information
about the transport properties of light in the material.
In this thesis we report a complete FDTD ab-initio study of light localization
and coherent backscattering. In particular, we consider a supercontinuum pulse impinging
on a sample composed of randomly positioned scatterers. We study coherent
backscattering by averaging over several realizations of the sample properties. We
study then the coherent backscattering cone properties as the relative permittivity of
the sample is changed, relating the latter with the light localization inside the sample.
We demonstrate important relationships between the width of the backscattering
cone and the localization length, which shows a linear proportionality in the strong localization regime.
|
2 |
Quantum transport of ultracold atoms in disordered potentials / Transport quantique d'atomes ultrafroids dans des potentiels désordonnésJendrzejewski, Fred 06 November 2012 (has links)
Dans cette thèse, nous étudions le transport quantique d’ondes de matière avec des atomes ultrafroids. Ces systèmes d’atomes ultrafroids fournissent un très bon contrôle et une grande flexibilité pour les paramètres du système tels que les interactions, sa dimensionnalité et les potentiels externes. Cela les rend un excellent outil pour l’étude de plusieurs concepts fondamentaux de la physique de la matière condensée. Nous nous concentrons sur le transport quantique dans les milieux désordonnés. Il diffère du transport classique par le rôle fondamental joué par les phénomènes d’inférence, qui peuvent éventuellement conduire à la suppression du transport; connu comme la Localisation d’Anderson. Nous étudions l’expansion d’un condensat de Bose-Einstein dans un désordre fort et montrons des signes de localisation d’atomes ultrafroids à trois dimensions. Dans la dernière partie de ce manuscrit, nous discutons l’observation de la rétrodiffusion cohérente d’atomes ultrafroids, ce qui est un signal direct du rôle de la cohérence quantique dans le transport quantique dans les milieux désordonnés. Nous observons l’évolution temporelle de la distribution d’impulsions d’un nuage de atomes ultrafroids, lancé avec une distribution de vitesse étroite dans un potentiel désordonné. Un pic émerge dans le sens rétrograde, correspondant au signal de CBS. / In this thesis we study the quantum transport of matter waves with ultracold atoms. Such ultracold atom systems provide a very good control and a high flexibility of the parameters of the systems like the interactions, its dimensionality and the external potentials. This makes them a great tool for the investigation of several fundamental concepts of condensed matter physics. We focus on the quantum transport in disordered media. It differs to classical transport by the fundamental role played by inference phenomena, which can eventually lead to the suppression of transport; known as Anderson Localization. Observing the expansion of a Bose-Einstein condensate in a strong light disorder, we show evidence for Localization of ultracold atoms in three dimensions. In the last part of this manuscript we discuss the observation of Coherent Backscattering of ultracold atoms, which is a direct signal of the role of quantum coherence in quantum transport in disordered media. We observe the time evolution of the momentum distribution of a cloud of ultra-cold atoms, launched with a narrow velocity distribution in a disordered potential. A peak emerges in the backwards direction, corresponding to the CBS signal.
|
3 |
Quantum transport of ultracold atoms in disordered potentialsJendrzejewski, Fred 06 November 2012 (has links) (PDF)
In this thesis we study the quantum transport of matter waves with ultracold atoms. Such ultracold atom systems provide a very good control and a high flexibility of the parameters of the systems like the interactions, its dimensionality and the external potentials. This makes them a great tool for the investigation of several fundamental concepts of condensed matter physics. We focus on the quantum transport in disordered media. It differs to classical transport by the fundamental role played by inference phenomena, which can eventually lead to the suppression of transport; known as Anderson Localization. Observing the expansion of a Bose-Einstein condensate in a strong light disorder, we show evidence for Localization of ultracold atoms in three dimensions. In the last part of this manuscript we discuss the observation of Coherent Backscattering of ultracold atoms, which is a direct signal of the role of quantum coherence in quantum transport in disordered media. We observe the time evolution of the momentum distribution of a cloud of ultra-cold atoms, launched with a narrow velocity distribution in a disordered potential. A peak emerges in the backwards direction, corresponding to the CBS signal.
|
4 |
Propagation d'atomes ultra-froids en milieu désordonné - Étude dans l'espace des impulsions de phénomènes de diffusion et de localisation / Propagation of ultracold atoms in disorder - Momentum space study of diffusion and localization phenomenaRichard, Jérémie 16 November 2015 (has links)
Les travaux effectués au cours de cette thèse ont pour trait commun l'observation dans l'espace des vitesses de phénomènes liés à la diffusion et à la localisation d'ondes de matière en milieu désordonné. Nous commençons par introduire les deux domaines à la croisée desquels cette thèse s'inscrit. Nous abordons en premier lieu la physique du désordre et de la propagation en milieu complexe en décrivant de façon générale les phénomènes de diffusion et de localisation tels que la rétro-diffusion cohérente ou la localisation d'Anderson. En second lieu, nous développons l'aspect expérimental de ces travaux au travers de l'outil au cœur des recherches de notre équipe : les atomes froids, manipulés et contrôlés dans le but de créer une onde de matière cohérente analogue à une onde plane. L'optique étant une facette primordiale de nos travaux, nous proposons par la suite une étude complète du système expérimental à l'origine de notre milieu désordonné, appelé champ de tavelures (ou speckle en anglais). Ces étapes préliminaires nous permettent ainsi d'introduire les recherches effectuées par notre équipe. Un paramètre élémentaire de la diffusion, le temps élastique de diffusion, est mesuré expérimentalement de façon détaillée, pour un champ de tavelures attractif et répulsif. Un phénomène de localisation faible visible dans l'espace des vitesses, la rétro-diffusion cohérente, observée pour la première fois avec des atomes froids, est ensuite présenté. Son prolongement, la résurgence de rétro-diffusion cohérente, étudiée par notre équipe, est basée sur la manipulation d'une propriété primordiale pour la propagation cohérente en milieu désordonné : la symétrie par renversement du temps. Enfin, nous proposons une étude préliminaire d'un marqueur inédit dans l'espace des vitesses de la localisation d'Anderson : la diffusion cohérente avant. / The work presented in this thesis is linked to the observation in momentum space of diffusion and localization phenomena using matter waves in optical disorder. We start by a general introduction on disorder physics and propagation in complex media by describing diffusion and localization phenomena such as the coherent backscattering or the Anderson localization. Then, we develop the experimental aspect of our work which is related to ultra-cold atoms, manipulated and controlled in order to create a coherent matter-wave analogous to a plane wave. Optics is an essential aspect of our work, that is why we present a complete experimental study of the system of creation of our disorder, called speckle field. These preliminary steps allow us to describe the research done by our team. An elementary parameter of diffusion, the elastic scattering time has been experimentally measured for an attractive and a repulsive speckle field. A weak localization phenomenon visible in momentum space, the coherent backscattering, observed for the first time with ultra-cold atoms, is then presented. The consequent study of the resurgence of coherent backscattering, done by our team, is based on the manipulation of an essential property for coherent propagation in disorder: the time reversal symmetry. Finally, we present a preliminary study of a novel signature in momentum space of the Anderson localization called coherent forward-scattering.
|
Page generated in 0.1304 seconds