• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo de cointegração variando com o tempo: abordagem via ondaletas / Time varying cointegration model: approach using wavelets

Eder Lucio da Fonseca 06 March 2017 (has links)
Duas ou mais séries não estacionárias são cointegradas se existir uma relação de equilíbrio de longo prazo entre elas. Nas últimas décadas, o interesse na literatura sobre o tema cointegração aumentou de maneira expressiva. Os modelos tradicionais supõem que o vetor de cointegração não varia ao longo do tempo. Entretanto, existem evidências na literatura de que esta suposição pode ser considerada muito restritiva. Utilizando o conceito de ondaletas, propomos um modelo de correção de erros vetorial em que é permitido ao vetor de cointegração variar ao longo do tempo. Diferente de trabalhos similares, é permitido ao vetor de cointegração variar suave ou abruptamente, dependendo da família de ondaletas considerada. Experimentos de Monte Carlo foram utilizados para estudar os quantis e o poder do teste de razão de verossimilhanças entre as hipóteses de cointegração usual e a de cointegração variando com o tempo. Os experimentos sugerem que o teste possui poder contra alternativas que variam ao longo do tempo. Foi demonstrada a capacidade do modelo em lidar satisfatoriamente com séries cointegradas simuladas, que apresentavam mudança de regime para o vetor de cointegração. O modelo foi empregado ainda para testar a validade da hipótese de paridade de poder de compra entre Estados Unidos e doze países da Organização para Cooperação e Desenvolvimento Econômico (OECD): Canadá, Japão e mais dez países europeus. Assim como em trabalhos similares, foram verificadas evidências de cointegração variando com o tempo entre os países. Foram utilizados valores-p bootstrap para verificar a significância da estatística do teste. / Two or more non-stationary time series are cointegrated if there is a long-run equilibrium relationship between them. In recent decades, interest in the literature on the subject of cointegration increased expressively. Traditional models that address this issue assume that the cointegration vector does not vary over time. However, there is evidence in the literature that this assumption can be considered very restrictive. Using the concept of wavelets, we propose a vector error correction model in which is allowed to the cointegration vector vary over time. Unlike similar works, the cointegration vector is allowed to vary smoothly or abruptly, depending on the considered family of wavelets. Monte Carlo experiments were used to study the quantiles and the power of the likelihood ratio test of the hypotheses of usual cointegration versus the time-varying cointegration. The experiments suggest that the test has power against alternatives that vary over time. It was demonstrated the ability of the model to deal satisfactorily with simulated cointegrated series, which presented regime change for the cointegration vector. The model was also used to test the validity of the Purchasing Power Parity hypothesis between United States and twelve countries of the Organization for Economic Cooperation and Development (OECD): Canada, Japan and ten other European countries. As in similar works, evidence of time-varying cointegration was verified among countries. Bootstrap p-values were used to verify the significance of the likelihood ratio of the test.
2

Modelo de cointegração variando com o tempo: abordagem via ondaletas / Time varying cointegration model: approach using wavelets

Fonseca, Eder Lucio da 06 March 2017 (has links)
Duas ou mais séries não estacionárias são cointegradas se existir uma relação de equilíbrio de longo prazo entre elas. Nas últimas décadas, o interesse na literatura sobre o tema cointegração aumentou de maneira expressiva. Os modelos tradicionais supõem que o vetor de cointegração não varia ao longo do tempo. Entretanto, existem evidências na literatura de que esta suposição pode ser considerada muito restritiva. Utilizando o conceito de ondaletas, propomos um modelo de correção de erros vetorial em que é permitido ao vetor de cointegração variar ao longo do tempo. Diferente de trabalhos similares, é permitido ao vetor de cointegração variar suave ou abruptamente, dependendo da família de ondaletas considerada. Experimentos de Monte Carlo foram utilizados para estudar os quantis e o poder do teste de razão de verossimilhanças entre as hipóteses de cointegração usual e a de cointegração variando com o tempo. Os experimentos sugerem que o teste possui poder contra alternativas que variam ao longo do tempo. Foi demonstrada a capacidade do modelo em lidar satisfatoriamente com séries cointegradas simuladas, que apresentavam mudança de regime para o vetor de cointegração. O modelo foi empregado ainda para testar a validade da hipótese de paridade de poder de compra entre Estados Unidos e doze países da Organização para Cooperação e Desenvolvimento Econômico (OECD): Canadá, Japão e mais dez países europeus. Assim como em trabalhos similares, foram verificadas evidências de cointegração variando com o tempo entre os países. Foram utilizados valores-p bootstrap para verificar a significância da estatística do teste. / Two or more non-stationary time series are cointegrated if there is a long-run equilibrium relationship between them. In recent decades, interest in the literature on the subject of cointegration increased expressively. Traditional models that address this issue assume that the cointegration vector does not vary over time. However, there is evidence in the literature that this assumption can be considered very restrictive. Using the concept of wavelets, we propose a vector error correction model in which is allowed to the cointegration vector vary over time. Unlike similar works, the cointegration vector is allowed to vary smoothly or abruptly, depending on the considered family of wavelets. Monte Carlo experiments were used to study the quantiles and the power of the likelihood ratio test of the hypotheses of usual cointegration versus the time-varying cointegration. The experiments suggest that the test has power against alternatives that vary over time. It was demonstrated the ability of the model to deal satisfactorily with simulated cointegrated series, which presented regime change for the cointegration vector. The model was also used to test the validity of the Purchasing Power Parity hypothesis between United States and twelve countries of the Organization for Economic Cooperation and Development (OECD): Canada, Japan and ten other European countries. As in similar works, evidence of time-varying cointegration was verified among countries. Bootstrap p-values were used to verify the significance of the likelihood ratio of the test.

Page generated in 0.0773 seconds