• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics of the cold surface layer of polythermal Storglaciären, Sweden

Pettersson, Rickard January 2004 (has links)
<p>Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing.</p><p>A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates.</p><p>The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären.</p><p>Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.</p>
2

Dynamics of the cold surface layer of polythermal Storglaciären, Sweden

Pettersson, Rickard January 2004 (has links)
Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.
3

Cold Surface Layer Dynamics of Storglaciären, Northern Sweden 2009-2019 / Dynamik av det kalla ytskiktet på Storglaciären, norra Sverige 2009 – 2019

Feng, Shunan January 2019 (has links)
Storglaciären is a sub-Arctic polythermal glacier in northern Sweden. Twenty years' monitoring of thecold surface layer found that it has lost one third of its total volume of cold ice with an average thinningrate of 0.80 ± 0.24 m·a-1 for the period of 1989-2009. This thesis presents the continuous investigationof the thermal structure evolution of Storglaciären using thermistor string measurements and a coupledenergy balance-snowpack model. The thickness dynamics of the cold surface layer is derived from boththe thermistor string measurement (2018-2019) and the simulation results (2009-2018).    The subsurface temperature evolution and the associated cold-temperate transition surface (CTS)dynamics are analyzed at both the thermistor scale and glacier scale. Point study involves installing athermistor string and extrapolating the measured subsurface temperature to the pressure melting pointisotherm depth. The simulated CTS depth changes at the study site was also used for comparison. Glacierscale study aims to simulate the spatial and temporal variations of the thickness of the cold surface layer.Meteorological data was collected from multiple automatic weather stations and the solid precipitationwas estimated from the winter mass balance survey. The model was utilized in the study of the coldsurface layer dynamics for the first time.    Both the point scale and glacier scale study suggest an overall thickening trend of the cold surfacelayer. The thermistor derived CTS depth exhibits a thickening rate of ~0.9 m·a-1 compared to the depthderived from ground penetrating radar survey in 2009. The influence of mass balance, melt andaccumulation are also examined by spatial correlation with CTS depth. / Storglaciären är en subarktisk polytermal glaciär i norra Sverige som har ett kallt ytskikt iablationsområdet. Tidigare studier av mäktigheten hos det kalla ytskiktet visar att Storglaciären harförlorat en tredjedel av sin totala volym av kall is med en genomsnittlig uttunningshastighet på 0,80 ±0,24 m · a-1 för perioden 1989-2009. Denna uppsats presenterar den fortsatta utvecklingen av det kallaytskiktet på Storglaciären under perioden 2009 till 2019 med hjälp av istemperaturmätningar och enytenergi balansmodell koppla till en och en termodynamisk modell för snö och is. Istemperaturensutveckling och djupet till övergången mellan kall och tempererad is (CTS) analyseras både på lokalskalavid en punkt och över hela glaciären. Punktstudien utnyttjar temperaturmätningar vid en termistorslingaför att uppskatta temperaturfördelningen i isen och djupet för övergången mellan kall och tempereradis. Resultaten används också för jämförelse med simulerade resultat. Den rumsliga studien använder enkopplad energibalans och en termodynamisk modell för snö och is för att simulera rumsliga ochtidsmässiga variationer av tjockleken på det kalla ytskiktet. Som ingångsdata till modellen användesmeteorologiska data från flera automatiska väder stationer och den nederbörden i fast form uppskattadesfrån massbalans mätningar som görs på glaciären. Det är fösta gången den här typen av modell användsför att studera det kalla ytskiktets dynamik.    Både på lokalskala och glaciärskala tyder på en övergripande förtjockningstrend av det kallaytskiktet. Uppskattningen av CTS djupet vid temperaturmätningar uppvisar en ökningshastighet av ~0,9 m · a-1 av det kalla skiktets tjocklek jämfört med markradar undersökningar i 2009. Påverkan ochrumslig korrelation mellan massbalans, smältning och ackumulation på CTS-djupet undersöks också.
4

Changes in the Cold Surface Layer on a Polythermal Glacier during Substantial Ice Mass Loss / Förändringar i det kalla ytskiktet på en polytermal glaciär under omfattande massförlust

Blomdahl, Klara January 2015 (has links)
Climate change in the Arctic and sub-Arctic has induced substantial changes in the inland cryosphere. The warming climate is causing a reduction in glacier size and extent and the average net mass balance for Arctic glaciers have been negative over the past 40 years. Relatively few studies have been conducted concerning the development of the thermal distribution in glaciers during extensive volume changes. There is a possible diversity in how the thermal structure might change with a changing climate. Storglaciären is losing the cold surface layer in the ablation area and progressively becomes more temperate, while Kårsaglaciären is losing the zone of temperate ice in the ablation area and consequently becoming colder. The overall objective of this study has been to improve the understanding of the thermal response of polythermal glaciers to climate change. The results from Pårteglaciären, northern Sweden, indicate a decrease in volume by 18% in the last 15 years with an expected decrease of 35% of its present size during the coming century. As a consequence of the prevailing climate and volume decrease Pårteglaciären is experiencing a thinning of the cold surface layer at an average rate of 1.13 m a-1. The volumetric and cold surface layer changes are in the same magnitude, which may indicate that the CTS adapts relatively rapidly to the present changes. Assuming a climatic effect similar to what has been observed on Storglaciären, it can be concluded that the thinning has influenced the thermal regime. But in contrast to Kårsaglaciären, the thermal distribution on Pårteglaciären has become more temperate as a result of the substantial mass loss. / Klimatförändringar i Arktis och subarktis har orsakat stora förändringar i kryosfären. Ett varmare klimat orsakar en minskning av glaciärers storlek och omfattning och nettomassbalansen för Arktiska glaciärer har varit negativ under de senaste 40 åren. Relativt få studier har genomförts angående utvecklingen av den termiska fördelningen i glaciärer under omfattande volymförändringar. Det finns en möjlig diversitet i hur den termiska strukturen kan ändras med ett förändrat klimat. Storglaciären förlorar det kalla ytskiktet i ablationsområdet och blir successivt mer tempererad, medan Kårsaglaciären förlorar zonen med tempererad is i ablationsområdet och blir därmed kallare. Syftet med den här studien har varit att öka förståelsen för den termiska reaktionen hos polytermala glaciärer till ett förändrat klimat. Resultaten från Pårteglaciären i norra Sverige visar en volymreducering med 18% under de senaste 15 åren med en förväntad minskning på 35% av den nuvarande storleken under det kommande århundradet. Som en följd av det rådande klimatet och den reducerade volymen genomgår det kalla ytskiktet på Pårteglaciären en förtunning med en genomsnittlig hastighet av 1.13 m a-1. Volymförändringarna och förändringarna i kalla ytskiktet är i samma storleksordning, vilket tyder på att CTS anpassas relativt snabbt till de nuvarande förändringarna. Förutsatt en klimatisk effekt liknande den som observerats på Storglaciären, kan slutsatsen dras att förtunningen har påverkat den termiska regimen. Men i motsats till Kårsaglaciären har den termiska fördelningen på Pårteglaciären blivit mer tempererad som ett resultat av den omfattande massförlusten.

Page generated in 0.0928 seconds