• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 595
  • 586
  • 72
  • 69
  • 30
  • 26
  • 20
  • 17
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1635
  • 529
  • 194
  • 185
  • 185
  • 150
  • 134
  • 133
  • 129
  • 122
  • 122
  • 91
  • 88
  • 86
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Does Ultrasound Stimulation Improve the Quality or Quantity of Collagen in Tissue Engineered Cartilage?

Shockley, Michael January 2013 (has links)
Articular cartilage is a highly specialized connective tissue in the body responsible for protecting and cushioning bony ends in diarthrodial joints. Despite the unique ability of this tough, spongy matrix to absorb repetitive stress and loading, cartilage damage is a common occurrence, and as cartilage possesses poor self-repair capabilities, tissue-engineered cartilage replacement is under development as a viable method of repair. Tissue-engineered constructs have thus far been unable to replicate the matrix composition of native cartilage satisfactorily enough to produce usable mechanical properties; in particular, collagen content is very low. One means of improving engineered construct composition may be pulsed low-intensity ultrasound (PLIUS), which is used clinically to stimulate healing of chronic bone lesions, and has been shown to affect chondrocytes in cartilage explants and engineered constructs. We believe it may be of use specifically in improving collagen quantity and quality in engineered constructs. FT-IR spectroscopy shows promise as a valuable tool in collagen crosslink maturity analysis, replacing the current expensive, complicated standard of HPLC and allowing for high-resolution spatial mapping of components. A spectral parameter has been established in literature as being related to collagen maturity in bone, which we explore as a potential means of assessing collagen quality in our engineered cartilage. The specific aims of this research are twofold: first, to assess whether PLIUS improves primary bovine chondrocyte-seeded poly-glycolic acid (PGA) mesh scaffold composition by culturing groups with and without PLIUS stimulation, and second, to correlate FT-IR parameters (including the aforementioned maturity parameter) from engineered cartilage specimens and pure crosslink peptides to mechanical testing in unconfined compression. / Bioengineering
482

Regulation of Syk activity in GPVI-mediated platelet activation

Thomas, Dafydd Huw January 2010 (has links)
Activation of platelets is essential for hemostasis. Following damage to the vascular endothelium collagen is exposed, to which platelets stably adhere. After adhesion on collagen, a signaling cascade is initiated, mediated by Glycoprotein VI (GPVI), which results in platelet activation. A major signaling protein in GPVI signaling is Spleen tyrosine kinase (Syk). It undergoes phosphorylation and activation following GPVI stimulation. Syk's central role in this physiological process suggests regulation of its activity is required to maintain the platelets response to collagen within physiological limits. The regulation of Syk activation is the focus of this work. Previously published reports implicate the phosphatases SHP-1, SHP-2 and TULA-2 in the negative regulation of Syk. Therefore, we tested these phosphatases possible role in platelets. We show that SHP-1 can dephosphorylate Syk in vitro, but is unable to bind Syk. Also, Syk is hypophosphorylated in GPVI-stimulated SHP-1 deficient platelets and platelet functional responses are minimally affected compared to wild-type platelets. SHP-2 is unable to bind Syk and Syk is not a good substrate for SHP-2 in vitro. TULA-2 dephosphorylated Syk in vitro and associated with Syk in platelets. In TULA-2 deficient platelets, Syk and PLCγ2 were hyperphosphorylated compared to wild-type platelets. Deletion of TULA-2 resulted in enhanced GPVI-dependent platelet functional responses and a prothrombotic phenotype. c-Cbl has been shown to be a negative regulator of GPVI signaling, possibly by regulating Syk phosphorylation. Thus, SHP-1, SHP-2 and TULA-2’s role in c-Cbl regulation of GPVI was also investigated. We show that TULA-2 is able to bind c-Cbl in platelets. SHP-1 and SHP-2 do not. Furthermore, we show a striking similarity between the phenotype of TULA-2 and c-Cbl deficient platelets. However, in vitro binding studies show TULA-2 is able to bind Syk independently of c-Cbl. Thus, the exact role of c-Cbl in regulating Syk dephosphorylation is unclear. In conclusion, we show SHP-1 and SHP-2 are probably not involved in the negative regulation of Syk. However, TULA-2 is the major phosphatase responsible for the negative regulation of Syk in GPVI signaling. This serves to negatively regulate GPVI-mediated platelet function and prevent uncontrolled platelet activation that could lead to thrombosis. / Pharmacology
483

The Larval Requirement for Matrix Metalloproteinase-Mediated Remodelling of the Cardiac Extracellular Matrix in Drosophila melanogaster / Matrix Metalloproteinase Remodelling of the Extracellular Matrix

Hughes, Chris 06 1900 (has links)
The Drosophila heart is a tubular vessel surrounded by a dynamic scaffold of extracellular matrix (ECM) proteins. Heart development and function rely upon protease-mediated remodelling and turnover of the ECM, and changes in ECM composition correlate with age and cardiac disease. Previous research has shown that a family of proteases called matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), are necessary for normal cardiac cell migration and lumenogenesis. The Drosophila heart expands considerably throughout growth, but the role of MMP activity has not been elucidated at this time. I examine the role of the two Drosophila MMPs, MMP1 and MMP2, as well as TIMP, in defining larval heart structure and ECM protein distribution. I observe heart phenotypes via immunofluorescence labelling and confocal microscopy using loss-of-function mutants, gene over-expression, and gene knock-down techniques. Reduced MMP1 function during embryogenesis correlates with myofibrillar disorganisation, whereas reduced MMP2 function or TIMP over-expression both result in cardia bifida as well as increased density and ectopic localisation of Collagen-IV and Pericardin. Post-embryonic MMP reduction compromises cardiac structural integrity but does not affect Pericardin localisation. Live imaging of the larval heart with optical coherence tomography (OCT) and light microscopy reveals that reduced MMP2 function correlates with decreased heart rate but not impaired dilation or contraction. These data suggest that MMP2 activity during embryogenesis is critical for larval heart development. In contrast, post-embryonic protease function appears to have a less pronounced effect on ECM protein distribution throughout larval development. / Thesis / Master of Science (MS) / The fruit fly (Drosophila) heart undergoes significant changes in organisation and size throughout development and growth. The heart is surrounded and supported by a network of extracellular matrix (ECM) proteins, which is regulated by proteases, including matrix metalloproteinases (MMPs). Previous research has shown that MMPs are required for normal heart formation. I demonstrate that a reduction in MMP activity during embryonic development results in larval heart defects and an increase in the disorganisation of ECM proteins around the heart, whereas reduction during larval development results in less pronounced protein mislocalisation. These findings are corroborated via over-expression of an MMP inhibitor.
484

The role of multimerin 1 (MMRN1) in platelet adhesion and characterization of its interactions with fibrillar collagens

Leatherdale, Alexander January 2020 (has links)
Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a large homopolymeric glycoprotein that is synthesized and stored by platelets and endothelial cells until activation-induced release. MMRN1 is able to support platelet adhesion through mechanisms involving von Willebrand factor (VWF) and glycoprotein (GP)Ibα, and β3 integrins on activated platelets, and it enhances platelet adhesion to fibrillar collagen, potentially by binding to putative MMRN1-specific GPAGPOGPX (where O is hydroxyproline and X is valine or glutamine) motifs in fibrillar collagens. Using mice with and without selective Mmrn1 deficiency, the goals of this thesis were: 1) further characterize the ability of Mmrn1 to enhance platelet adhesion to collagen, 2) explore the role of fluid shear stress in the ability of Mmrn1 to enhance platelet adhesion, and 3) test the specificity of the GPAGPOGPX motif for Mmrn1 and the ability of GPAGPOGPX to support or enhance platelet adhesion. Mmrn1-deficient (Mmrn1-/-) mouse platelets showed impaired aggregate formation on fibrillar collagen surfaces under high (1500 s-1) and low (300 s-1) shear flow compared to wild-type (Mmrn1+/+) mouse platelets, which was due to reduced initial adhesion and a slower rate of platelet accumulation onto collagen surfaces. Similarly, Mmrn1-/- platelets formed smaller aggregates on immobilized recombinant (r)Vwf surfaces compared to wild-type platelets, and Mmrn1-/- platelets had impaired adhesion and aggregate formation on immobilized murine fibrinogen, but not fibrin, when platelets were pre-activated to release Mmrn1. Type I fibrillar collagen was found to contain a variant of the GPAGPOGPX motif (GPAGPOGPI), and GPAGPOGPX motifs supported adhesion of wild-type, but not Mmrn1-/-, platelets. When presented with the VWF-binding GPRGQOGVMGFO motif and the integrin α2β1-binding GFOGER motif present in fibrillar collagens, the GPAGPOGPX motifs synergistically enhanced platelet adhesion. These findings expand upon the known adhesive functions of platelet multimerin 1 and update knowledge of the motifs that support platelet adhesion to fibrillar collagens. / Dissertation / Doctor of Philosophy (Medical Science)
485

The Role of Collagen Piezoelectricity on Kinetic Process of Bone Mineralization

Kwon, Jinha 24 August 2022 (has links)
No description available.
486

Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs

Mahjour, S.B., Sefat, Farshid, Polunin, Y., Wang, L., Wang, H. 04 February 2016 (has links)
Yes / While achieving the spatial organization of cells within 3D assembled nanofiber/cell constructs via nanofiber-enabled cell layering, the small sizes of inter-fiber pores of the electrospun nanofiber mats could significantly limit cell penetration across the layers for rapid formation of an integrated tissue construct. To address this challenge, efforts were made to improve cell-infiltration of electrospun nanofiber mats by modulating the density distribution and spatial organization of the fibers during electrospinning. Collection of collagen-containing electrospun nanofibers (300–600 nm in diameter) onto the surface of a stainless steel metal mesh (1 mm × 1 mm in mesh size) led to the periodic alternation of fiber density from densely packed to loosely arranged distribution within the same mat, in which the densely packed fibers maintained the structural integrity while the region of loose fibers allowed for cell penetration. Along with improved cell infiltration, the distinct fiber organization between dense and loose fiber regions also induced different morphology of fibroblasts (stellate vs. elongated spindle-like). Assembly of cell-seeded nanofiber sheets into 3D constructs with such periodically organized nanofiber mats further demonstrated their advantages in improving cell penetration across layers in comparison to either random or aligned nanofiber mats. Taken together, modulation of nanofiber density to enlarge the pore size is effective to improve cell infiltration through electrospun mats for better tissue formation. / NSF-IIP. Grant Numbers: 1338958, 1346430; NSF-DMR. Grant Number: 1508511; NSF-CBET. Grant Number: 1033742; and NIAMS. Grant Number: 1R21 AR056416
487

The Effects of Dietary Lipids on Bone Chemical, Mechanical and Histological Properties in Japanese Quail (Coturnix C. Japonica)

Liu, Dongmin 12 July 2000 (has links)
Japanese quail were used as animal models in four experiments to evaluate the effects of supplementing diets with different lipids on bone chemical, mechanical, and histological properties. In Exp. 1, laying hens were fed a basal diet containing either 5% soybean oil (SBO), hydrogenated soybean oil (HSBO), chicken fat (CF), or menhaden fish oil (FO). The addition of SBO in the maternal diet increased the levels of total n-6 fatty acids and arachidonic acid (AA, 20:4n-6) in yolk and tibial bones of newly hatched progeny (P<0.01), whereas the maternal FO diet elevated the concentrations of total n-3 fatty acids, eicosapentaenoic acid (EPA, 22:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and total saturated acid, but greatly decreased the amount of AA in both egg and progeny tibiae (P<0.01). The maternal HSBO diet resulted in the accumulation of trans-18:1 fatty acid in egg yolks and tibiae at hatch. The addition of FO or HSBO to the maternal diet significantly lowered the ex vivo PGE2 production of tibiae in newly hatched quail compared to those from hens given the SBO or CF diets (P<0.01). In Exp. 2, the addition of different lipids in the maternal diets did not affect growth, tibial length, diameter or collagen content of the progeny. However, supplementing the maternal diet with 5 % FO or HSBO increased the percent bone ash , increased bone pyridinium crosslinks of collagen, enlarged the cartilaginous proliferative and hypertrophied zones, increased diaphyseal cortical thickness of the tibiae in embryos (P<0.05), and subsequently increased tibial shear force, stiffness (P<0.05) and improved cortical thickness, density and trabecular density in early growth and development of progeny compared to those from hens consuming the SBO or CF diets (P<0.05). In Exp. 3, male quail at one month of age were fed a basal diet containing either 5% SBO, HSBO, CF or FO for seven months. Long-term supplementation in the diets of different lipids did not affect body weight, food intake, tibial length or diameter, but the FO group had the highest tibial percent ash, and both FO and HSBO increased tibial mineral content in aged quail compared to those fed the SBO or CF diets (P<0.05). At 8 months of age, quail fed FO had the highest concentrations of (n-3) fatty acids (20:5n-3, 22:5n-3, 22:6n-3) but the lowest amounts of 20:4n-6 in lipids from tibial cortical bone, whereas the SBO and CF diets greatly elevated (n-6) fatty acids and 20:4n-6 levels. The HSBO diet which contains t18:1 fatty acid resulted in t18:1 accumulation in bone. Long-term supplementation with FO or HSBO increased tibial shear force, stiffness and shear stress, as well as improved cortical thickness and density compared with the SBO or CF diets ( P<.05). In Exp. 4, the addition of SBO or CF to the diet for seven months decreased tibial mineral content compared to the FO diet (P<0.05). Quail fed SBO increased collagen concentration in the tibiae (P<0.05), but the level of collagen crosslinks was higher in quail fed FO or HSBO compared to those given the SBO or CF diets (P<0.05). The PGE2 production in bone organ culture and marrow was greatly increased in quail maintained on the SBO or CF diets (P<0.05). PGE2 production in the bone microenvironment was negatively correlated with the tibial percent ash and collagen crosslinks but had a positive correlation with tibial collagen concentration. The results of these studies demonstrate that either supplementing the maternal diets with or long-term exposure to different lipids alters the chemical composition and metabolism of skeletal tissue in both embryos and aged quail. Maternal dietary SBO or CF had an adverse effect on bone growth and development in embryos. Likewise, long-term exposure to SBO or CF diet impaired bone metabolism and remodeling. In contrast, the FO or HSBO diet had beneficial effects on bone modeling in embryos and remodeling in adult quail. / Ph. D.
488

Building a Better Scar: Re-engineering Extracellular Matrix Structure in Dermal Scars

Montgomery, Jade 27 January 2020 (has links)
Introduction Cutaneous scars represent a common surgical complication, yet no effective drug therapy for scar treatment currently exists despite huge patient and physician demand. A connexin 43 (Cx43) carboxyl terminus (CT) mimetic peptide, alpha Connexin Carboxy-Terminus 1 (αCT1), has demonstrated efficacy in improving long-term scar appearance in pre-clinical and clinical trials. However, current understanding of the mechanism-of-action by which αCT1 improves long-term scar appearance with early intervention treatment is not well understood. Methods In vivo: Scar biopsies from 1) human, 2) Sprague-Dawley rat, and 3) IAF Hairless guinea pig trials of αCT1 were examined for collagen matrix structure at 4 weeks (all models), and 2 and 6 weeks (rat and guinea pig models only). Collagen matrix variables examined included local disorganization of the fibers, a variable that is higher in unwounded skin compared to scar tissue, and density of the fibers, which is higher in scar tissue but can also be used as an early temporal marker of the rate of healing. In vitro: Primary murine dermal fibroblasts were isolated from the whole dermis of 3-4 week old transgenic mice expressing collagen 1(α2) GFP-tpz. Cells were sorted for expression via FACS and plated on prealigned collagen substrate for 7 days under conditions favorable to generating extracellular matrix. Results: All in vivo scar biopsies demonstrated some level of altered collagen matrix structure with αCT1 treatment. Treated scars had higher local disorganization of the collagen fibers within the wound, and an increase in collagen matrix density compared to control at certain earlier timepoints that tended to decrease or disappear at later timepoints. The IAF Hairless guinea pig, a novel splinted wound healing model presented herein, was found to closely replicate the human dermal collagen profile and changes in collagen profile spurred by αCT1, significantly outperforming the traditional rat model. Primary dermal murine fibroblasts treated in vitro with αCT1 significantly increased synthesis of procollagen 1, the precursor of collagen 1 necessary for constructing the extracellular matrix, suggesting that at least part of the reason for higher collagen density at early in vivo timepoints is due to increased collagen synthesis by fibroblasts. Conclusion: αCT1 treatment in the early stages of wound healing prompts individual fibroblasts to increase their output of collagen and create a more disorganized early collagen matrix. These early changes potentially spur the long-term scar appearance improvements seen in clinical trials, and provide a basis for future work to discover the cellular pathways to alter in order to improve wound healing and cutaneous scarring outcomes. / Doctor of Philosophy / Skin wounds frequently result in scars that can range from barely visible to enormous eyesores. Almost everyone will experience at least one skin wound in their lifetime leading to a scar that they wish were less visible, feeding the multi-billion dollar market for anti-scarring agents. However, many of the products on store shelves that claim to reduce scar appearance have not proven those claims. Most of the therapies that do have some degree of scientific evidence to support their claims are difficult to use properly, such as silicone sheeting, and often result in only minor improvements to scar appearance. Alpha Connexin Carboxy-Terminus 1 (αCT1), marketed in clinical trials as Granexin® gel, is a protein-based therapy that works on the cellular level to fundamentally alter the skin's initial reaction to wounding and improving long-term scar appearance. This dissertation explores the link between cellular processes altered by αCT1 and long-term clinical improvements in scar appearance by studying both the extracellular matrix present in the scar in human and animal models and the creation of that extracellular matrix by dermal fibroblasts. In both human and animal models, topical application of αCT1 had no effect on skin surface appearance at early timepoints of 2-6 weeks, correlating with previous research that found scar appearance only improved at 3+ months post-injury. However, deep within the newly constructed tissue of the scar, these studies show the collagen organizational structure of αCT1-treated scars is more similar to unwounded skin and slightly more dense at early timepoints, suggesting αCT1 marginally improved the speed of healing. These findings in humans and animals were also verified in part in cell culture experiments that found dermal fibroblasts increased collagen output in response to αCT1 treatment. A novel wound healing model in the hairless guinea pig, superior at replicating human skin than established models like the rat, is also presented and shown to have effects strongly similar to the human with αCT1 treatment. These results provide a fundamental insight into the mode-of-action by which αCT1 may improve long term scar appearance and identifies early collagen structure as a target for future therapeutics to modify, as well as a new animal model in which to test them.
489

Viscoelastic Models for Ligaments and Tendons

Sopakayang, Ratchada 15 January 2011 (has links)
Collagenous tissues such as ligaments and tendons are viscoelastic materials. They exhibit a slow continuous increase in strain over time, or creep, when subjected to a constant stress and a slow continuous decrease in stress over time, or stress relaxation, when subjected to a constant strain. Moreover, the loading and unloading stress-strain curves are different when the tissues are subjected to cyclic loading, showing hysteresis and softening phenomena. The micro-structural origin of the viscoelasticity of these tissues is still unknown and the subject of debate among experts in biomechanics. Therefore, formulating viscoelastic models by accounting for the mechanical contributions of the structural components of these tissues can help in understanding the genesis of viscoelasticity. A nonlinear viscoelastic modeling framework has been developed to describe the elastic and viscoelastic properties of ligaments and tendons by considering their main structural components, the collagen fibers and proteoglycan-rich matrix. The mathematical models derived within this framework can illustrate the tensile behavior, stress relaxation and creep by as suming that the collagen fibers are elastic and the surrounding proteoglycan-rich matrix is viscoelastic. The collagen fibers are represented by linear elastic springs that are engaged to support load at different values of the tissue's strain according to a Weibull distribution function. The mechanical contribution of the matrix is introduced via a Maxwell-type viscoelastic element arranged in parallel with the collagen fibers. According to the proposed mathematical framework, both the collagen fibers and the proteoglycan-rich matrix are responsible for resisting tensile loads. However, the collagen fibers play a significant role in creep while the proteoglycan-rich matrix has a dominant role in stress relaxation. The model parameters that define the stress relaxation and strain stiffening phenomena are estimated by using published experimental on rabbit medial collateral ligaments and are then used to predict creep. The above modeling framework has been also extended to capture the in uence of preconditioning on the mechanical properties of ligaments and tendons. The stress softening and decrease in hysteresis that are observed during successive loading cycles in preconditioning are assumed to be determined by a decrease in the elastic properties of the collagen fibers and proteoglycan-rich matrix. Preliminary data collected on stress relaxation and preconditioning on rat medial collateral ligaments by collaborators are used to evaluate the model parameters and analyze its predictions. The elastic and viscoelastic properties of single collagen fibers are studied by formulating a nonlinear viscoelastic framework by accounting for their main components: microfibrils, cross-links and proteoglycan-rich matrix. The model illustrates tensile behavior and stress relaxation of a single collagen fiber by assuming that the microfibrils and the cross-links are elastic and the surrounding proteoglycan-rich matrix is viscoelastic. The mechanical contribution of the microfibrils is included via a linear elastic spring while the cross-links are represented by linear elastic springs that progressively fail at different values of the tissue's strain according to an exponential distribution function. The matrix is defined by linear dashpots arranged in parallel with each single spring that represents an individual cross-link. The viscous properties of the matrix associated with the unbroken and broken cross-links are assumed to have different values. In the model formulation, the microfibrils and the cross-links are assumed to determine the elastic response of the fibers while the proteoglycan-rich matrix determines the stress relaxation. Microfibrils, cross-links and the proteoglycan-rich matrix are responsible for resisting the loading force during tensile behavior. Experimental data collected by performing incremental stress relaxation tests by other investigators on reconstituted rat tail tendons are used to estimate the parameters in the model and evaluate its performance. / Ph. D.
490

Comparison of bone marrow mesenchymal stem cells and tendon progenitor cells cultured on collagen surfaces

Brown, James Augustus 26 May 2010 (has links)
Tendon injuries are a significant cause of morbidity in performance horses with superficial digital flexor tendon injury reported to represent up to 43% of overall Thoroughbred racehorse injuries. Natural repair is slow and results in inferior structural organization and biomechanical properties and, therefore, reinjury is common. The inability of tendon to regenerate after injury, or to heal with mechanical properties comparable to the original tissue, is likely attributable to low vascularity and cellularity of the tissue, low number of resident progenitor cells, and healing under weight-bearing conditions. Strategies to improve tendon healing have focused on enhancing the metabolic response of tenocytes, modulating the organization of the newly synthesized extracellular matrix, or administering progenitor cells to enhance repair. Significant research effort has been directed at the use of adult mesenchymal stem cells as a source of progenitor cells for equine tendon repair and recent clinical applications have utilized adult autologous stem cells derived either from adipose tissue or bone marrow aspirates. Isolation of a homogenous population of stem cells from bone marrow is time-consuming, and there is much variation in cell numbers, cell viability and growth rates among samples. Recently, a population of progenitor cells has been isolated from equine flexor tendons, thus providing an alternative source of progenitor cells from the target tissue for therapeutic intervention. The interaction between cells and the extracellular matrix (ECM) is an important factor in regulation of cell function. Proliferation, migration, differentiation and gene expression of many cell types are altered by adhesion to and interaction with matrix proteins and the extracellular environment. Tendon progenitor cells reside within a niche that comprises primarily parallel collagen fibers, and this niche plays an important role in regulating their function and differentiation. Culture conditions replicating this environment could be beneficial for both cell growth and matrix gene expression. The objectives of the study were to compare cell growth kinetics and biosynthetic capabilities of bone marrow mesenchymal stem cells (BMMSCs) and tendon derived progenitor cells (TPCs) cultured on commercially available bovine, highly purified bovine, porcine, and rattus collagen sources and standard tissue culture surfaces. We hypothesized that collagen type I matrix would preferentially support TPC proliferation and up regulate gene expression for collagens and organizational components of tendon and therefore provide a culture system and progenitor cell type with advantages over the current practice of BMMSC expansion on standard cell culture plastic surfaces. Cells were isolated from 6 young adult horses, expanded, and cultured on collagen-coated tissue culture plates, and no collagen control for 7 days. Samples were analyzed for cell number on days 4 and 7, and for mRNA expression of collagen type I, collagen type III, cartilage oligomeric matrix protein (COMP), and decorin on day 7. Glycosaminoglycan (GAG) synthesis was analyzed on day 7. Differences of cell number between collagen groups and cell type, and in gene expression and GAG synthesis between collagen groups and cell types, were evaluated by use of mixed-model repeated measures ANOVA. Pair-wise comparisons were made on significant differences identified with ANOVA using Tukey's post hoc test. Statistical significance was set at P<0.05. A statistical significant (P=0.05) increase in cell number for TPCs grown on rattus collagen versus control on day 4 was observed. No difference in GAG synthesis or expression of collagen type I, collagen type III, COMP or decorin mRNA was observed between collagen groups and non-collagen controls for either cell type on day 7. TPCs cultured on all collagen types yielded more cells than similarly cultured BMMSCs on day 4, but only porcine collagen was superior on day 7. TPCs synthesized more GAG than BMMSCs when cultured on control surfaces only. BMMSCs expressed more collagen type I mRNA when cultured on control, porcine and highly-purified collagen, and more collagen type III when cultured on control, porcine, highly-purified collagen, and rattus collagen, than TPCs. Tendon-progenitor cells expressed significantly more COMP when cultured on control and all collagen types, and decorin when cultured on porcine, highly purified bovine and bovine collagen when compared to BMMSCs. The results of this study revealed an advantage to culturing TPCs on randomly organized rattus collagen during the early growth phase. The beneficial effects of collagen-coated surfaces on cell proliferation is likely related to increased surface area for attachment and expansion provided by the random collagen matrix, and/or collagen-cell interactions. Tendon progenitor cells showed superior growth kinetics and expression of the matrix organizational components, COMP and decorin, than similarly cultured BMMSCs that expressed more collagen types III and I. TPCs synthesize more GAG compared to BMMSCs when cultured on plastic surfaces and there was no induction by collagen. Tendon progenitor cells should be considered as an alternative source of progenitor cells for injured equine tendons. Further in vitro studies characterizing factors that influence gene expression of both cell types is warranted. / Master of Science

Page generated in 0.0572 seconds