Spelling suggestions: "subject:"combinaison dde classificateurs"" "subject:"combinaison dde classified""
1 |
MÉLIDIS : Reconnaissance de formes par modélisation mixte intrinsèque/discriminante à base de systèmes d'inférence floue hiérarchisésRagot, Nicolas 28 October 2003 (has links) (PDF)
La problématique de la reconnaissance de formes manuscrites est particulièrement riche et complexe. Il existe en effet un grand nombre de problèmes différents à traiter dans lesquels les formes à reconnaître sont nombreuses, soumises à une variabilité importante et donc sources de confusions. De plus, les contraintes applicatives, et notamment celles résultant de la volonté de diffusion des moyens informatiques au travers de l'informatique nomade (PDA, smart phone...), font que la conception et l'adaptation de systèmes de reconnaissance à des contextes précis d'utilisation sont particulièrement délicats.<br /><br />Pour faciliter cette mise au point nous proposons une méthodologie de classification visant à réunir un ensemble de propriétés rarement satisfaites dans une même approche : performances, généricité, fiabilité, robustesse, compacité et interprétabilité. Ce dernier point est particulièrement important puisqu'il permet au concepteur d'adapter, de maintenir et d'optimiser le système plus facilement. L'approche proposée, centrée sur la notion de connaissances dans un classifieur, est entièrement guidée par les données. L'originalité réside notamment dans l'exploitation conjointe de connaissances intrinsèques et discriminantes extraites automatiquement et organisées sur deux niveaux pour bénéficier au mieux de leur complémentarité. Le premier niveaux modélise les classes de façon explicite par des prototypes flous. Ceux-ci sont notamment utilisés pour décomposer le problème initial en sous-problèmes dans lesquels les formes possèdant des propriétés intrinsèques similaires sont regroupées. Le second niveau effectue ensuite une discrimination ciblée sur ces sous-problèmes par des arbres de décision flous. L'ensemble est formalisé de façon homogène par des systèmes d'inférence floue qui sont combinés pour la classification.<br /><br />Cette approche a conduit à la réalisation du système Mélidis qui a été validé sur plusieurs benchmarks dont des problèmes de reconnaissance de caractères manuscrits en ligne.
|
2 |
Prédiction d'Interactions et Amarrage Protéine-Protéine par combinaison de classifieursAzé, Jérôme 16 November 2012 (has links) (PDF)
Le travail présenté dans ce document correspond à huit années de recherche sur la problématique de l'interaction entre protéines. J'ai abordé le problème de la prédiction des interactions entre protéines sous l'angle de l'apprentissage supervisé. Je me suis donc intéressé à l'apprentissage de modèles prédictifs aux interactions entre protéines. J'ai étudié deux types d'interactions différentes : - l'interaction protéine-protéine au sens réseau d'interactions ; - l'interaction physique entre protéines consistant à prédire quels résidus se trouvent effectivement en interaction (amarrage protéine-protéine). Le document est structuré de la manière suivante : après avoir présenté la problématique de l'apprentissage supervisé et non-supervisé dans le premier chapitre, un second chapitre est consacré à la prédiction d'interaction protéine-protéine. Les résultats obtenus sur l'amarrage protéine-protéine est présenté dans le troisième chapitre et enfin, un dernier chapitre est consacré aux perspectives associées à ces travaux.
|
3 |
Approches multiéchelles pour la segmentation de très grandes images : application à la quantification de biomarqueurs en histopathologie cancérologique.Signolle, Nicolas 03 November 2009 (has links) (PDF)
Visualiser et analyser automatiquement des coupes fines de tumeurs cancéreuses sont des enjeux majeurs pour progresser dans la compréhension des mécanismes de la cancérisation et mettre en évidence de nouveaux indicateurs de réponse au traitement. Les nouveaux scanners microscopiques apportent une aide essentielle en fournissant des images couleur haute résolution de la totalité des lames histologiques. Ceci permet de s'affranchir de l'hétérogénéité de distribution des marqueurs à quantifier. La taille de ces images, appelées lames virtuelles, peut atteindre plusieurs GigaOctets. L'objectif de cette thèse est de concevoir et d'implémenter une méthode de segmentation permettant de séparer les différents types de compartiments stromaux présents sur une lame virtuelle de carcinome ovarien. Les deux principales difficultés à surmonter sont la taille des images, qui empêche de les traiter en une seule fois, et le choix de critères permettant de différencier les compartiments stromaux. Pour répondre à ces problèmes, nous avons développé une méthode générique de segmentation multiéchelle qui associe un découpage judicieux de l'image à une caractérisation de chaque compartiment stromal, considéré comme une texture. Cette caractérisation repose sur une modélisation multiéchelle des textures par un modèle d'arbre de Markov caché, appliqué sur les coefficients de la décomposition en ondelettes. Plutôt que de considérer tous les types de compartiments stromaux simultanément, nous avons choisi de transformer le problème multiclasse en un ensemble de problèmes binaires. Nous avons également analysé l'influence d'hyperparamètres (représentation couleur, type d'ondelettes et nombre de niveaux de résolutions intégrés à l'analyse) sur la segmentation, ce qui nous a permis de sélectionner les classifieurs les mieux adaptés. Différentes méthodes de combinaison des décisions des meilleurs classifieurs ont ensuite été étudiées. La méthode a été testée sur une vingtaine de lames virtuelles. Afin d'évaluer les résultats de la segmentation, nous avons mis en œuvre un protocole de tests fondé sur une approche stéréologique. Les résultats sur différents jeux de tests (images synthétiques, images de petite taille, images réelles) sont présentés et commentés. Les résultats obtenus sur les lames virtuelles sont prometteurs, compte tenu de la variabilité des échantillons et de la difficulté, pour un expert, à identifier parfois très précisément un compartiment : environ 60% des points sont correctement classés (entre 35% et 80% selon les lames).
|
Page generated in 0.1059 seconds