• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles graphiques probabilistes pour la reconnaissance de formes

Barrat, Sabine 04 December 2009 (has links) (PDF)
La croissance rapide d'Internet et de l'information multimédia a suscité un besoin en développement de techniques de recherche d'information multimédia, et en particulier de recherche d'images. On peut distinguer deux tendances. La première, appelée recherche d'images à base de texte, consiste à appliquer des techniques de recherche d'information textuelle à partir d'images annotées. Le texte constitue une caractéristique de haut-niveau, mais cette technique présente plusieurs inconvénients : elle nécessite un travail d'annotation fastidieux. De plus, les annotations peuvent être ambiguës car deux utilisateurs peuvent utiliser deux mots-clés différents pour décrire la même image. Par conséquent, plusieurs approches ont proposé d'utiliser l'ontologie Wordnet, afin de réduire ces ambiguïtés potentielles. La seconde approche, appelée recherche d'images par le contenu, est plus récente. Ces techniques de recherche d'images par le contenu sont basées sur des caractéristiques visuelles (couleur, texture ou forme), calculées automatiquement, et utilisent une mesure de similarité afin de retrouver des images. Cependant, les performances obtenues ne sont pas vraiment acceptables, excepté dans le cas de corpus spécialisés. De façon à améliorer la reconnaissance, une solution consiste à combiner différentes sources d'information : par exemple, différentes caractéristiques visuelles et/ou de l'information sémantique. Or, dans de nombreux problèmes de vision, on dispose rarement d'échantillons d'apprentissage entièrement annotés. Par contre, il est plus facile d'obtenir seulement un sous-ensemble de données annotées, car l'annotation d'un sous-ensemble est moins contraignante pour l'utilisateur. Dans cette direction, cette thèse traite des problèmes de modélisation, classification et annotation d'images. Nous présentons une méthode pour l'optimisation de la classification d'images naturelles, en utilisant une approche de classification d'images basée à la fois sur le contenu des images et le texte associé aux images, et en annotant automatiquement les images non annotées. De plus, nous proposons une méthode de reconnaissance de symboles, en combinant différentes caractéristiques visuelles. L'approche proposée est dérivée de la théorie des modèles graphiques probabilistes et dédiée aux deux tâches de classification d'images naturelles partiellement annotées, et d'annotation. Nous considérons une image comme partiellement annotée si son nombre de mots-clés est inférieur au maximum de mots-clés observés dans la vérité-terrain. Grâce à leur capacité à gérer les données manquantes et à représenter d'éventuelles relations entre mots-clés, les modèles graphiques probabilistes ont été proposés pour représenter des images partiellement annotées. Par conséquent, le modèle que nous proposons ne requiert pas que toutes les images soient annotées : quand une image est partiellement annotée, les mots-clés manquants sont considérés comme des données manquantes. De plus, notre modèle peut étendre automatiquement des annotations existantes à d'autres images partiellement annotées, sans intervention de l'utilisateur. L'incertitude autour de l'association entre un ensemble de mots-clés et une image est représentée par une distribution de probabilité jointe sur le vocabulaire des mots-clés et les caractéristiques visuelles extraites de nos bases d'images. Notre modèle est aussi utilisé pour reconnaître des symboles en combinant différents types de caractéristiques visuelles (caractéristiques discrètes et continues). De plus, de façon à résoudre le problème de dimensionnalité dû à la grande dimension des caractéristiques visuelles, nous avons adapté une méthode de sélection de variables. Enfin, nous avons proposé un modèle de recherche d'images permettant à l'utilisateur de formuler des requêtes sous forme de mots-clés et/ou d'images. Ce modèle intègre un processus de retour de pertinence. Les résultats expérimentaux, obtenus sur de grandes bases d'images complexes, généralistes ou spécialisées, montrent l'intérêt de notre approche. Enfin, notre méthode s'est montrée compétitive avec des modèles de l'état de l'art.
2

Améliorer la recherche par similarité dans une grande base d'images fixes par des techniques de fouilles de données

Kouomou-Choupo, Anicet 23 February 2006 (has links) (PDF)
Les images fixes peuvent, entre autres, être décrites au niveau du pixel par des descripteurs visuels globaux de couleur, de texture ou de forme. La recherche par le contenu exploite et combine alors ces descripteurs dont le coût de calcul est d'autant plus important que la taille de la base d'images est grande. Les résultats de la recherche sont ensuite classés en fonction de leur similarité à la requête soumise et présentés à l'utilisateur sous forme de liste ordonnée. Un sous-ensemble de descripteurs pourrait cependant suffire à répondre à une recherche par similarité beaucoup plus rapidement, tout en gardant une qualité acceptable des résultats de recherche. Nous proposons pour cela une méthode de sélection automatique des descripteurs visuels qui exploite les règles d'association pour élaborer des stratégies d'exécution réduisant le temps de la recherche par le contenu dans de grandes bases d'images fixes. Dans cette thèse, nous présentons également comment une recherche par le contenu peut être adaptée pour proposer des résultats intermédiaires qui sont fusionnés de façon progressive avec l'avantage pour l'utilisateur, d'une part, de ne pas attendre que toute la base ait été parcourue avant de fournir un résultat et, d'autre part, de lui permettre de stopper la requête en cours d'exécution. Les expérimentations conduites sur des bases d'images réelles montrent que notre méthode améliore notablement les temps de réponse. Elles confirment aussi l'intérêt de la combinaison des descripteurs globaux pour la recherche d'images par le contenu.

Page generated in 0.1191 seconds