• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Characterization, and Evaluation of Ag-based Electrical Contact Materials

Mao, Fang January 2017 (has links)
Ag is a widely used electrical contact material due to its excellent electrical properties. The problems with Ag are that it is soft and has poor tribological properties (high friction and wear in Ag/Ag sliding contacts). For smart grid applications, friction and wear became increasingly important issues to be improved, due to much higher sliding frequency in the harsh operation environment. The aim of this thesis is to explore several different concepts to improve the properties of Ag electrical contacts for smart grid applications. Bulk Ag-X (X=Al, Sn In) alloys were synthesized by melting of metals. An important result was that the presence of a hcp phase in the alloys significantly reduced friction coefficients and wear rates compared to Ag. This was explained by a sliding-induced reorientation of easy-shearing planes in the hexagonal structure. The Ag-In system showed the best combination of properties for potential use in future contact applications.  This thesis has also demonstrated the strength of a combinatorial approach as a high-throughput method to rapidly screen Ag-based alloy coatings. It was also used for a rapid identification of optimal deposition parameters for reactive sputtering of a complex AgFeO2 oxide with narrow synthesis window. A new and rapid process was developed to grow low frictional AgI coatings and a novel designed microstructure of nanoporous Ag filled with AgI (n-porous Ag/AgI) using a solution chemical method was also explored. The AgI coatings exhibited low friction coefficient and acceptable contact resistance. However, under very harsh conditions, their lifetime is too short. The initial tribotests showed high friction coefficient of the n-porous Ag/AgI coating, indicating an issue regarding its mechanical integrity. The use of graphene as a solid lubricant in sliding electrical contacts was investigated as well. The results show that graphene is an excellent solid lubricant in Ag-based contacts. Furthermore, the lubricating effect was found to be dependent on chemical composition of the counter surface. As an alternative lubricant, graphene oxide is cheaper and easier to produce. Preliminary tests with graphene oxide showed a similar frictional behavior as graphene suggesting a potential use of this material as lubricant in Ag contacts.
2

Jet and coat of adaptive sustainable thin films

Singhal, Shrawan 13 November 2013 (has links)
Deposition of nanoscale thickness films is ubiquitous in micro- and nano-scale device manufacturing. Current techniques such as spin-coating and chemical vapor deposition are designed to create only uniform thin films, and can be wasteful in material consumption. They lack the ability to adaptively prescribe desired film thickness profiles. This dissertation presents a novel inkjet-based zero-waste polymer deposition process referred to as Jet and Coat of Adaptive Sustainable Thin Films or J-CAST. The core of this process is built on an experimentally validated multi-scale fluid evolution model, based on extensions of lubrication theory. This model involves a nano-scale fluid film sandwiched between two flat plates: a compliant superstrate and a rigid substrate, with spatial topography on both surfaces. Accounting for the flexural elasticity of the compliant superstrate, and describing the temporal evolution of the fluid film in the presence of different boundary conditions reveals that instead of seeking process equilibrium, non-equilibrium transients should be exploited to guide film deposition. This forms the first core concept behind the process. This concept also enables robust full-wafer processes for creation of uniform films as well as nanoscale films with prescribed variation of thickness at mm-scale spatial wavelengths. The use of inkjets enables zero-waste adaptive material deposition with the preferred drop volumes and locations obtained from an inverse optimization formulation. This forms the second core concept behind the process. The optimization is based on the prescribed film thickness profile and typically involves >100,000 integer parameters. Using simplifying approximations for the same, three specific applications have been discussed - gradient surfaces in combinatorial materials science and research, elliptical profiles with ~10km radius of curvature for X-ray nanoscopy applications and polishing of starting wafer surfaces for mitigation of existing nanotopography. In addition, the potential of extending the demonstrated process to high throughput roll-roll systems has also been mentioned by modifying the model to incorporate the compliance of the substrate along with that of the superstrate. / text

Page generated in 0.1429 seconds