• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adapting Fourier Analysis for Predicting Earth, Mars and Lunar Orbiting Satellite's Telemetry Behavior

Losik, Len 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
2

Using Telemetry Science, An Adaptation of Prognostic Algorithms for Predicting Normal Space Vehicle Telemetry Behavior from Space for Earth and Lunar Satellites and Interplanetary Spacecraft

Losik, Len 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.
3

Adapting Fourier Analysis for Predicting Earth, Mars and Lunar Orbiting Satellite's Telemetry Behavior

Losik, Len 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / Prognostic technology uses a series of algorithms, combined forms a prognostic-based inference engine (PBIE) for the identification of deterministic behavior embedded in completely normal appearing telemetry from fully functional equipment. The algorithms used to define normal behavior in the PBIE from which deterministic behavior is identified can be adapted to quantify normal spacecraft telemetry behavior while in orbit about a moon or planet or during interplanetary travel. Time-series analog engineering data (telemetry) from orbiting satellites and interplanetary spacecraft are defined by harmonic and non-harmonic influences, which shape it behavior. Spectrum analysis can be used to understand and quantify the fundamental behavior of spacecraft analog telemetry and relate the behavior's frequency and phase to its time-series behavior through Fourier analysis.

Page generated in 0.1646 seconds