• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 14
  • 12
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rake receiver performance in direct sequence spread spectrum systems operating at high data rates /

Adnani, Nikhil, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2004. / Includes bibliographical references (p. 163-174). Also available in electronic format on the Internet.
12

Viterbi decoders for mobile and satellite communications /

Abdul Shakoor, Abdul Rafeeq, January 1900 (has links)
Thesis (M. App. Sc.)--Carleton University, 2004. / Includes bibliographical references (p. 75-79). Also available in electronic format on the Internet.
13

Routing and channel assignment in optical and wireless networks /

He, Jingyi. January 2004 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 88-97). Also available in electronic version. Access restricted to campus users.
14

Empirical evaluation of diversity techniques for indoor digital radio at 1.75 GHz.

Todd, Stephen Ross, Carleton University. Dissertation. Engineering, Electrical. January 1992 (has links)
Thesis (M. Eng.)--Carleton University. 1993. / Also available in electronic format on the Internet.
15

The characterisation and modelling of the wireless propagation channel in small cells scenarios

Fang, Cheng January 2015 (has links)
The rapid growth in wireless data traffic in recent years has placed a great strain on the wireless spectrum and the capacity of current wireless networks. In addition, the makeup of the typical wireless propagation environment is rapidly changing as a greater percentage of data traffic moves indoors, where the coverage of radio signals is poor. This dual fronted assault on coverage and capacity has meant that the tradition cellular model is no longer sustainable, as the gains from constructing new macrocells falls short of the increasing cost. The key emerging concept that can solve the aforementioned challenges is smaller base stations such as micro-, pico- and femto-cells collectively known as small cells. However with this solution come new challenges: while small cells are efficient at improving the indoor coverage and capacity; they compound the lack of spectrum even more and cause high levels of interference. Current channel models are not suited to characterise this interference as the small cells propagation environment is vast different. The result is that overall efficiency of the networks suffers. This thesis presents an investigation into the characteristics of the wireless propagation channel in small cell environments, including measurement, analysis, modelling, validation and extraction of channel data. Two comprehensive data collection campaigns were carried out, one of them employed a RUSK channel sounder and featured dual-polarised MIMO antennas. From the first dataset an empirical path loss model, adapted to typical indoor and outdoor scenarios found in small cell environments, was constructed using regression analysis and was validated using the second dataset. The model shows good accuracy for small cell environments and can be implemented in system level simulations quickly without much requirements.
16

Beamforming Techniques for Frequency-Selective and Millimeter-Wave Indoor Broadcast Channels

Viteri Mera, Carlos Andres 26 July 2018 (has links)
No description available.
17

Spectrum sensing and occupancy prediction for cognitive machine-to-machine wireless networks

Chatziantoniou, Eleftherios January 2014 (has links)
The rapid growth of the Internet of Things (IoT) introduces an additional challenge to the existing spectrum under-utilisation problem as large scale deployments of thousands devices are expected to require wireless connectivity. Dynamic Spectrum Access (DSA) has been proposed as a means of improving the spectrum utilisation of wireless systems. Based on the Cognitive Radio (CR) paradigm, DSA enables unlicensed spectrum users to sense their spectral environment and adapt their operational parameters to opportunistically access any temporally unoccupied bands without causing interference to the primary spectrum users. In the same context, CR inspired Machine-to-Machine (M2M) communications have recently been proposed as a potential solution to the spectrum utilisation problem, which has been driven by the ever increasing number of interconnected devices. M2M communications introduce new challenges for CR in terms of operational environments and design requirements. With spectrum sensing being the key function for CR, this thesis investigates the performance of spectrum sensing and proposes novel sensing approaches and models to address the sensing problem for cognitive M2M deployments. In this thesis, the behaviour of Energy Detection (ED) spectrum sensing for cognitive M2M nodes is modelled using the two-wave with dffi use power fading model. This channel model can describe a variety of realistic fading conditions including worse than Rayleigh scenarios that are expected to occur within the operational environments of cognitive M2M communication systems. The results suggest that ED based spectrum sensing fails to meet the sensing requirements over worse than Rayleigh conditions and consequently requires the signal-to-noise ratio (SNR) to be increased by up to 137%. However, by employing appropriate diversity and node cooperation techniques, the sensing performance can be improved by up to 11.5dB in terms of the required SNR. These results are particularly useful in analysing the eff ects of severe fading in cognitive M2M systems and thus they can be used to design effi cient CR transceivers and to quantify the trade-o s between detection performance and energy e fficiency. A novel predictive spectrum sensing scheme that exploits historical data of past sensing events to predict channel occupancy is proposed and analysed. This approach allows CR terminals to sense only the channels that are predicted to be unoccupied rather than the whole band of interest. Based on this approach, a spectrum occupancy predictor is developed and experimentally validated. The proposed scheme achieves a prediction accuracy of up to 93% which in turn can lead to up to 84% reduction of the spectrum sensing cost. Furthermore, a novel probabilistic model for describing the channel availability in both the vertical and horizontal polarisations is developed. The proposed model is validated based on a measurement campaign for operational scenarios where CR terminals may change their polarisation during their operation. A Gaussian approximation is used to model the empirical channel availability data with more than 95% confi dence bounds. The proposed model can be used as a means of improving spectrum sensing performance by using statistical knowledge on the primary users occupancy pattern.
18

Distributed space-time block coding in cooperative relay networks with application in cognitive radio

Alotaibi, Faisal T. January 2012 (has links)
Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied.
19

Circuits and Systems for Future High-Capacity Wireless Communications at Millimeter-Wave Frequencies

Testa, Paolo Valerio 21 March 2022 (has links)
Future high-capacity wireless communications will extensively use the broad bands still available millimeter-wave frequencies. Channels with bandwidth broader than those in use today will guarantee enhanced data-rate and reduced latency performance. The recent progress of integrated-circuit semiconductor technologies finally allowed the design of reliable electronics operating at millimeter-wave frequencies. On top, advanced Fully Depleted Silicon On Insulator (FD-SOI) Complementary Metal Oxide Semiconductor (CMOS) and Silicon Germanium (SiGe) Bipolar CMOS (BiCMOS) processes enabled to co-integrate large digital blocks with frontends operating at tens or hundreds of GHz. The current under-deployment fifth-generation mobile-communication standard (5G) takes advantage of these advancements, massively exploiting the frequency bands from 24 GHz to 100 GHz. Furthermore, besides enlarging the channel bandwidth, improvements of the signal-to-noise power ratio (SNR) at the receiver input, combined with Multiple-Input Multiple-Output (MIMO) techniques provide an additional boost to the communication data-rate. Both approaches require arrays of antennas, plus electronic beam-steering which becomes essential in the case of moving transmitting-receiving pairs. Finally, social, economic, historical, and technological trends indicate that future wireless standards will require data-rates, latencies, and density of served users per square kilometer well beyond those offered by the 5G. Envisioned to be deployed towards the end of this decade, the six mobile communication standard (6G) will win future challenges thanks to the very ultra-broad bands available from 100 GHz until the tens of THz. Basic research is hence needed to address the open challenges necessary to reach the goals of future wireless communication systems, such as bandwidth and frequency operation factor-10 increase or power consumption reduction against the actual state of the art. This Habilitation thesis proposes circuit theory and concepts up to feasibility study of circuit implementation and experimental characterization in the laboratory of transceiver electronics for future high-capacity communications useful for the knowledge gain necessary for the conception of future communication systems. In detail, basic scientific research to understand the operation of millimeter-wave communication circuits implemented in 22 nm FD-SOI CMOS and 130 nm SiGe BiCMOS technologies has been performed.
20

An?lise e projeto de superf?cies seletivas de frequ?ncia com elementos pr?-fractais para aplica??es em comunica??es indoor

N?brega, Clarissa de Lucena 09 April 2013 (has links)
Made available in DSpace on 2014-12-17T14:55:11Z (GMT). No. of bitstreams: 1 ClarissaLN_TESE.pdf: 4153617 bytes, checksum: 6a9b7ed40b1f66da758afee4efaf74e9 (MD5) Previous issue date: 2013-04-09 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements / Nesta tese, uma superf?cie seletiva de frequ?ncia (FSS) consiste de uma estrutura peri?dica bidimensional montada sobre um substrato diel?trico, que ? capaz de selecionar sinais em uma ou mais faixas de frequ?ncias de interesse. Em busca da obten??o de um melhor desempenho, dimens?es mais compactas, baixo custo de fabrica??o, entre outras caracter?sticas, estas estruturas peri?dicas t?m sido continuamente otimizadas ao longo do tempo. Devido ?s suas caracter?sticas espectrais, que s?o similares as de filtros rejeita-faixa ou passa-faixa, as FSSs t?m sido estudadas e usadas em aplica??es diversas por mais de quatro d?cadas. O projeto de uma FSS com uma estrutura peri?dica composta de elementos pr?fractais facilita a sintonia destes filtros espaciais e o ajuste de seus par?metros eletromagn?ticos, possibilitando uma constru??o compacta, que, em geral, apresenta uma resposta est?vel em frequ?ncia e desempenho superior em rela??o ? sua contrapartida euclidiana. As propriedades ?nicas dos fractais geom?tricos t?m-se mostrado bastante ?teis, principalmente para a constru??o de antenas e superf?cies seletivas de frequ?ncia, permitindo solu??es inovadoras e aplica??es comerciais na faixa de micro-ondas. Em aplica??es mais recentes, as FSSs modificam os ambientes de propaga??o indoor (conceito emergente chamado de wireless building ). Neste contexto, o uso de elementos pr?-fractais tamb?m tem apresentado resultados promissores, tornando mais efetiva a filtragem de mais de uma faixa de frequ?ncias com uma estrutura de camada simples. Esta tese aborda o projeto de FSSs com elementos pr?-fractais baseados nas geometrias de Vicsek, Peano e dos ter?gonos, que funcionam como filtros espaciais do tipo rejeita-faixa. As propriedades de transmiss?o das superf?cies peri?dicas s?o analisadas para a concep??o de dispositivos eficientes, compactos e com respostas est?veis em frequ?ncia, aplic?veis na faixa de micro-ondas e adequados para utiliza??es em comunica??es indoor. Os resultados s?o discutidos em termos do efeito eletromagn?tico decorrente da varia??o de par?metros como, n?mero de itera??es fractais (ou n?vel do fractal), fator de escala, dimens?o fractal e periodicidade da FSS, de acordo com o elemento pr?-fractal utilizado. A an?lise da influ?ncia da dimens?o fractal sobre as propriedades de resson?ncia de uma FSS ? uma contribui??o nova no que diz respeito ?s pesquisas com dispositivos de micro-ondas que utilizam geometrias fractais. Devido ?s caracter?sticas pr?prias e a forma geom?trica dos elementos pr?-fractais de Peano, a possibilidade de reconfigura??o destas estruturas tamb?m ? investigada e discutida. Esta tese aborda ainda, a constru??o de filtros seletivos eficientes com novas configura??es de patches pr?-fractais do tipo ter?gonos, propostos para controle de cobertura WLAN em ambientes indoor, rejeitando os sinais nas faixas de 2,4~2,5 GHz (IEEE 802.11b) e 5,0~6,0 GHz (IEEE 802.11a). As FSSs s?o analisadas inicialmente por meio de simula??es executadas pelos programas comerciais Ansoft DesignerTM e HFSSTM. A metodologia de projeto ? validada atrav?s da caracteriza??o experimental dos prot?tipos constru?dos utilizando, alternativamente, diferentes setups de medi??o, com antenas corneta comerciais e monopolos de microfita de fabrica??o pr?pria para medi??es de baixo custo

Page generated in 0.164 seconds