• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factorization in polynomial rings with zero divisors

Edmonds, Ranthony A.C. 01 August 2018 (has links)
Factorization theory is concerned with the decomposition of mathematical objects. Such an object could be a polynomial, a number in the set of integers, or more generally an element in a ring. A classic example of a ring is the set of integers. If we take any two integers, for example 2 and 3, we know that $2 \cdot 3=3\cdot 2$, which shows that multiplication is commutative. Thus, the integers are a commutative ring. Also, if we take any two integers, call them $a$ and $b$, and their product $a\cdot b=0$, we know that $a$ or $b$ must be $0$. Any ring that possesses this property is called an integral domain. If there exist two nonzero elements, however, whose product is zero we call such elements zero divisors. This thesis focuses on factorization in commutative rings with zero divisors. In this work we extend the theory of factorization in commutative rings to polynomial rings with zero divisors. For a commutative ring $R$ with identity and its polynomial extension $R[X]$ the following questions are considered: if one of these rings has a certain factorization property, does the other? If not, what conditions must be in place for the answer to be yes? If there are no suitable conditions, are there counterexamples that demonstrate a polynomial ring can possess one factorization property and not another? Examples are given with respect to the properties of atomicity and ACCP. The central result is a comprehensive characterization of when $R[X]$ is a unique factorization ring.
2

Analysis of symmetric function ideals: towards a combinatorial description of the cohomology ring of Hessenberg varieties

Mbirika, Abukuse, III 01 July 2010 (has links)
Symmetric functions arise in many areas of mathematics including combinatorics, topology and algebraic geometry. Using ideals of symmetric functions, we tie these three branches together. This thesis generalizes work of Garsia and Procesi in 1992 that gave a quotient ring presentation for the cohomology ring of Springer varieties. Let R be the polynomial ring Ζ[x1,…,xn]. We present two different ideals in R. Both are parametrized by a Hessenberg function h, namely a nondecreasing function that satisfies h(i) ≥ i for all i. The first ideal, which we call Ih, is generated by modified elementary symmetric functions. The ideal I_h generalizes the work of Tanisaki who gave a combinatorial description of the ideal used in Garsia and Procesi's quotient ring. Like the Tanisaki ideal, the generating set for Ih is redundant. We give a minimal generating set for this ideal. The second ideal, which we call Jh, is generated by modified complete symmetric functions. The generators of this ideal form a Gröbner basis, which is a useful property. Using the Gröbner basis for Jh, we identify a basis for the quotient R/Jh. We introduce a partial ordering on the Hessenberg functions, and in turn we discover nice nesting properties in both families of ideals. When h>h', we have Ih ⊂ Ih' and Jh ⊂ Jh'. We prove that Ih equals Jh when h is maximal. Since Ih is the ideal generated by the elementary symmetric functions when h is maximal, the generating set for Jh forms a Gröbner basis for the elementary symmetric functions. Moreover, the quotient R/Jh gives another description of the cohomology ring of the full flag variety. The generators of the ring R/Jh are in bijective correspondence with the Betti numbers of certain Hessenberg varieties. These varieties are a two-parameter generalization of Springer varieties, parametrized by a nilpotent operator X and a Hessenberg function h. These varieties were introduced in 1992 by De Mari, Procesi and Shayman. We provide evidence that as h varies, the quotient R/Jh may be a presentation for the cohomology ring of a subclass of Hessenberg varieties called regular nilpotent varieties.

Page generated in 0.1052 seconds