• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extension of positive definite functions

Niedzialomski, Robert 01 May 2013 (has links)
Let $\Omega\subset\mathbb{R}^n$ be an open and connected subset of $\mathbb{R}^n$. We say that a function $F\colon \Omega-\Omega\to\mathbb{C}$, where $\Omega-\Omega=\{x-y\colon x,y\in\Omega\}$, is positive definite if for any $x_1,\ldots,x_m\in\Omega$ and any $c_1,\ldots,c_m\in \mathbb{C}$ we have that $\sum_{j,k=1}^m F(x_j-x_k)c_j\overline{c_k}\geq 0$. Let $F\colon\Omega-\Omega\to\mathbb{C}$ be a continuous positive definite function. We give necessary and sufficient conditions for $F$ to have an extension to a continuous and positive definite function defined on the entire Euclidean space $\mathbb{R}^n$. The conditions are formulated in terms of strong commutativity of some certain selfadjoint operators defined on a Hilbert space associated to our positive definite function.

Page generated in 0.1134 seconds