• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 113
  • 86
  • 82
  • 57
  • 37
  • 18
  • 8
  • 8
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 916
  • 78
  • 71
  • 64
  • 59
  • 52
  • 51
  • 49
  • 49
  • 46
  • 46
  • 45
  • 44
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Heat Transfer Measurements and Optimization Studies Relevant to Louvered Fin Compact Heat Exchangers

Stephan, Ryan Adam 28 August 2002 (has links)
A compact heat exchanger is a device used to transfer thermal energy between two or more fluids. The most extensive use of compact heat exchangers occurs in the commercial trucking industry. Most compact heat exchanger designs contain tubes carrying one fluid and external fins through which passes another fluid. To enhance the fin-side heat transfer in a compact heat exchanger, which is typically the air side of the heat exchanger, louvers are manufactured into the fins. Louvered fins initiate the growth of new boundary layers such that the average convective heat transfer coefficient is higher than that which would occur for a continuous fin. Approximately 85% of the total thermal resistance occurs on the air side of the heat exchanger. To design more space and weight efficient heat exchangers, it is imperative to gain a fundamental understanding of the mechanisms that serve to increase the heat transfer on the air side. This thesis presents the heat transfer results of three scaled-up louvered fin geometries and compares these results to six additional models in which the louver angle, fin pitch and Reynolds number were varied. Two experiments were performed to determine the reference temperature used for the calculation of the heat transfer coefficients. The use of two reference temperatures allowed the effects of the flow field and thermal field to be separated. This thesis also presents details of an optimization study performed for a louvered fin array. The results of the experimental study showed that the hot thermal wakes formed at the entrance louver have an adverse effect on the heat transfer of downstream louvers. Measuring the adiabatic wall temperature of the louvers in the array showed the effect of these thermal wakes. The experimental study showed that the optimal louver geometry was Reynolds number dependent. For the lower two Reynolds numbers of ReLp = 230 and 370, the Fp/Lp = 1.52, q = 27° model was found to be the best performer, which does not agree with previous studies. For ReLp = 1016, the Fp/Lp = 0.91, q = 39° model was shown to have optimal heat transfer performance, which is in agreement with a previous study performed by Chang and Wang (1996). / Master of Science
42

Spatially Resolved Heat Transfer Studies in Louvered Fins for Compact Heat Exchangers

Lyman, Andrew C. 18 September 2000 (has links)
Understanding the mechanisms that serve to increase heat transfer provides valuable knowledge to minimize the size and maximize the performance of compact heat exchangers. This document presents a detailed experimental heat transfer study of six scaled up louvered fin geometries that are typical of those found in modern louvered fin compact heat exchangers. Heat transfer measurements were performed over a range of Reynolds numbers and with two different boundary conditions. A fully heated boundary condition allowed the effects of the thermal field to be observed while an adiabatic boundary condition allowed the effects of the flow field to be observed. The results indicated that the complex thermal and flow field patterns that developed within the louvered fin geometries strongly affected the heat transfer of individual louvers. In the entrance region of the louvered array, the effects of the flow field were dominant while in the fully developed region of the louvered arrays, the effects of the thermal field were dominant. A companion two-dimensional CFD study indicated that the heat transfer trends of the louvers resulting from both the thermal and flow fields were well predicted. Based on heat transfer performance, it was determined that the theta = 27°, Fp/Lp = 1.52 geometry performed the best at Re = 230 and Re = 370, while the theta = 39°, Fp/Lp = 0.91 geometry performed best at Re = 1016. / Master of Science
43

Spaces of Compact Operators

Ghenciu, Ioana 05 1900 (has links)
In this dissertation we study the structure of spaces of operators, especially the space of all compact operators between two Banach spaces X and Y. Work by Kalton, Emmanuele, Bator and Lewis on the space of compact and weakly compact operators motivates much of this paper. Let L(X,Y) be the Banach space of all bounded linear operators between Banach spaces X and Y, K(X,Y) be the space of all compact operators, and W(X,Y) be the space of all weakly compact operators. We study problems related to the complementability of different operator ideals (the Banach space of all compact, weakly compact, completely continuous, resp. unconditionally converging) operators in the space of all bounded linear operators. The structure of Dunford-Pettis sets, strong Dunford-Pettis sets, and certain spaces of operators is studied in the context of the injective and projective tensor products of Banach spaces. Bibasic sequences are used to study relative norm compactness of strong Dunford-Pettis sets. Next, we use Dunford-Pettis sets to give sufficient conditions for K(X,Y) to contain c0.
44

Arithmetic dynamical systems

Miles, Richard Craig January 2000 (has links)
No description available.
45

Two-phase pressure drop and void fraction in narrow channels

Holt, Adrian John January 1996 (has links)
No description available.
46

Monitoring of crack growth and crack mouth opening displacement in compact tension specimens at high temperatures : Development and implementation of the Direct Current Potential Drop (DCPD) method / Övervakning av spricktillväxt samt spricköppning av kompakta spänningsprover vid höga temperaturer

Malmqvist, Philip January 2016 (has links)
The mechanical engineering department at the University of Idaho is conducting a project with the purpose of developing a complete system for investigating creep-, creep-fatigue- and fatigue properties of metallic materials at elevated temperatures up to 650 ˚C with Compact Tension (CT) specimens. Considerable efforts have been made to study and understand these phenomena, although numerous problems still exist. It is important to explore more extensively the complicated phenomena of creep, fatigue and of creep-fatigue interactions. The Direct Current Potential Drop (DCPD) method is a common method used to investigate, for example, the initiation of cracks, crack growth rates and to monitor crack growth. The technique utilizes the fact that the electrical resistance of a CT specimen changes with crack growth. By applying a constant current over the specimen and measuring the resulting voltage over the crack, the crack length can be related to the voltage, and the difference in crack length with difference in voltage. Standards from the American Society for Testing of Materials (ASTM) were used as guidance when designing the DCPD system and CT specimen. The development and implementation processes were divided into an analytical and an experimental stage. The final product consisted of a high temperature extensometer, to measure crack mouth opening displacement (CMOD), and a DCPD system, to measure crack growth, controlled by separate control units. The DCPD system consisted of a DC supply and a nano voltmeter along with Constantan wire and NiCr60 wire respectively, that were mechanically fastened. The DCPD system delivered overall satisfying results and was able to generate sufficient data to produce a crack growth curve, da/dN vs. ΔK. Although, by taking advantage of resistance welding equipment to attach the DCPD wires, along with implementing one shared control unit for the DCPD system and the extensometer, more accurate and accessible measurements and correlations could be extracted. / Mechanical engineering avdelningen på University of Idaho genomför just nu ett utvecklingsprojekt med syftet att utveckla ett komplett system för undersökning av krypnings, krypnings-utmattnings- samt utmattnings- egenskaper av metalliska material vid höga temperaturer upp till 650 ˚C med hjälp av kompakta spänningsprovstavar (CT specimens). Betydande ansträngningar har gjorts för att undersöka och förstå dessa fenomen, men flera problem kvarstår. Det är viktigt att djupare undersöka kopplingen mellan krypnings- och utmattningsegenskaper. Direct Current Potential Drop (DCPD) metoden är en vanlig metod vilken används för att undersöka, exempelvis, sprickinitiering, spricktillväxthastigheter och spricktillväxt. Tekniken utnyttjar faktumet att den elektriska resistansen i en provstav ändras med spricktillväxt. Genom att föra en konstant ström genom provstaven och sedan mäta den resulterande spänningen över sprickan, kan spricklängden relateras till uppmätt spänning. På samma sätt kan spricktillväxt relateras till spänningsförändringar. Standarder från American Society for Testing of Materials (ASTM) användes för att designa ett DCPD system samt en CT provstav. Utvecklings- och implementeringsprocessen var uppdelad i en analytisk och en experimentell del. Den slutgiltiga produkten bestod av en extensometer, för mätning av spricköppning vid höga temperaturer, och ett DCPD system, för mätning av spricktillväxt vid höga temperaturer, vilka kontrollerades av separata kontrollenheter. DCPD systemet bestod av en strömkälla och en nanovoltmeter tillsammans med Constantan kablar respektive NiCr60 kablar, vilka fastsättes mekaniskt. DCPD systemet levererade generellt sett tillfredställande resultat och hade kapacitet att generera tillräckligt precisa data för att producera en spricktillväxtkurva, da/dN vs. ΔK. Däremot, genom att utnyttja en resistanssvets, för att fastsätta DCPD-kablarna, tillsammans med en gemensam kontrollenhet för extensometern och DCPD systemet, kan det tänkas att bättre och mer tillgängliga resultat kunde åstadkommas.
47

Transients from the Birth and Death of Compact Objects

Margalit, Ben January 2018 (has links)
Astrophysical compact objects --- white dwarfs (WDs), neutron stars (NSs), and stellar mass black holes (BHs) --- mark the endpoints of normal stellar evolution. Their birth is often associated with dramatic explosions known as core-collapse supernovae (SNe). Such SNe are archetypal ``transients'' --- astronomical events which produce detectable emission for only a limited period of time (measurable over human timescales). This dissertation investigates the astrophysical implications of the formation and destruction of compact objects with particular focus on the transient phenomena that may be produced in such events. Part I is devoted to the ``death'' of compact objects by their coalescence with a binary companion. Such compact object binaries are driven towards merger by the extraction of orbital energy in the form of gravitational-waves (GW), and are thus prime targets for current and future GW detectors. In the first two chapters of Part I we consider the merger of a WD with a NS companion, beginning with Chapter 2, in which we explore the nuclearly-reactive accretion flow produced in the aftermath of such mergers and the possible `SN-like' transient it may give rise to. We continue in Chapter 3 by proposing that the late-time evolution of this post-merger accretion disk may result in terrestrial planet formation, broadly consistent with the mysterious ``pulsar planets'' observed orbiting PSR B1257+12. We shift our attention in the next couple chapters of this first part of the dissertation to binary NS mergers. In Chapter 4 we address the question of disk formation in the aftermath of the collapse of a rigidly-rotating supramassive NS, which is directly applicable to various models of gamma-ray bursts (GRBs). In Chapter 5 we utilize both GW and electromagnetic signatures of the first observed NS merger GW170817 to place new constraints on the NS equation of state. Finally, in Part II of this dissertation, we explore the connection between transient phenomena ranging from long- and ultra-long- GRBs, to energetic super-luminous SNe (SLSNe) and fast radio bursts (FRB), and relate these to the ``birth'' of a rapidly rotating highly-magnetized NS, a millisecond ``magnetar''. In Chapter 6 we show that both jetted and thermal transients (namely a GRB and a SLSN) can be powered simultaneously by such magnetars, and explore the various observational implications of this connection. We end with Chapter 7 in which we study the photo-ionization of the medium surrounding a newly born magnetar, discussing the observational signatures related to the escape of this ionizing radiation. We additionally address the propagation of radio waves and the dispersion measure induced by such photo-ionization and apply these to show that FRBs are broadly consistent with having young magnetars as their progenitors.
48

Approximation properties of groups.

January 2011 (has links)
Leung, Cheung Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 85-86). / Abstracts in English and Chinese. / Introduction --- p.6 / Chapter 1 --- Preliminaries --- p.7 / Chapter 1.1 --- Locally compact groups and unitary representations --- p.7 / Chapter 1.2 --- Positive definite functions --- p.10 / Chapter 1.3 --- Affine isometric actions of groups --- p.23 / Chapter 1.4 --- Ultraproducts --- p.29 / Chapter 2 --- Amenability --- p.33 / Chapter 2.1 --- Reiter's property --- p.33 / Chapter 2.2 --- Fφlner's property --- p.41 / Chapter 3 --- Kazhdan's Property (T) --- p.43 / Chapter 3.1 --- Definition and basic properties --- p.43 / Chapter 3.2 --- Property (FH) --- p.51 / Chapter 3.3 --- Spectral criterion for Property (T) --- p.56 / Chapter 3.4 --- Property (T) for SL3(Z) --- p.60 / Chapter 3.5 --- Expanders --- p.72 / Approximation Properties of Groups --- p.5 / Chapter 4 --- Haagerup Property --- p.74 / Chapter 4.1 --- Equivalent formulations of Haagerup Property --- p.74 / Chapter 4.2 --- Trees and wall structures --- p.82 / Bibliography --- p.85
49

Gravitational waves and dynamical processes in hot newborn compact stars.

January 2010 (has links)
Lau, Hoi Kwan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 208-212). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Gravitational wave astronomy --- p.1 / Chapter 1.2 --- Stellar pulsation and gravitational radiation --- p.3 / Chapter 1.3 --- Outline --- p.5 / Chapter 2 --- Hydrostatic stellar structure --- p.8 / Chapter 2.1 --- Structural equation --- p.9 / Chapter 3 --- Finite temperature equations of state of nuclear matter --- p.13 / Chapter 3.1 --- Finite temperature ordinary nuclear matter --- p.13 / Chapter 3.2 --- Strange Quark Matter --- p.15 / Chapter 3.3 --- Equilibrium and Dynamic EOS --- p.16 / Chapter 4 --- Stellar pulsation and gravitational radiation --- p.19 / Chapter 4.1 --- Linearized theory of general relativity --- p.19 / Chapter 4.2 --- Stellar oscillation --- p.25 / Chapter 4.3 --- Quasi-normal Mode --- p.28 / Chapter 4.3.1 --- f mode --- p.29 / Chapter 4.3.2 --- p mode --- p.29 / Chapter 4.3.3 --- g mode --- p.30 / Chapter 4.3.4 --- w mode --- p.31 / Chapter 5 --- Gravitational wave spectrum of hot compact stars --- p.32 / Chapter 5.1 --- Numerical results --- p.32 / Chapter 5.1.1 --- Temperature effect on QNM --- p.32 / Chapter 5.1.2 --- Temperature effect and QS model --- p.38 / Chapter 5.1.3 --- QNM shift due to phase transition --- p.41 / Chapter 5.2 --- Summary and prospective --- p.48 / Chapter 6 --- Universality of fundamental mode and spacetime mode --- p.50 / Chapter 6.1 --- Review --- p.50 / Chapter 6.2 --- Generic proposal of universalities --- p.53 / Chapter 6.2.1 --- Moment of Inertia --- p.54 / Chapter 6.2.2 --- Gravitational wave spectrum --- p.57 / Chapter 6.3 --- Universality on moment of inertia --- p.63 / Chapter 6.4 --- Origin of universality --- p.70 / Chapter 6.4.1 --- Tolman VII model --- p.71 / Chapter 6.4.2 --- Polytropic Model --- p.76 / Chapter 6.5 --- Application of universality --- p.82 / Chapter 6.6 --- Summary --- p.89 / Chapter 7 --- Quark star properties and gravity mode oscillation --- p.92 / Chapter 7.1 --- Introduction --- p.92 / Chapter 7.2 --- g mode frequencies of quark stars --- p.94 / Chapter 7.2.1 --- Temperature profile and p mode frequency --- p.96 / Chapter 7.2.2 --- Strange quark mass and Yp mode frequency --- p.104 / Chapter 7.3 --- Summary --- p.108 / Chapter 8 --- Gravitational radiation excitation by infalling shell --- p.111 / Chapter 8.1 --- Introduction --- p.111 / Chapter 8.2 --- Formalism --- p.116 / Chapter 8.2.1 --- Connection between star and vacuum --- p.117 / Chapter 8.2.2 --- Matter source --- p.121 / Chapter 8.2.3 --- Geodesic --- p.124 / Chapter 8.2.4 --- Source of infalling dust shell --- p.126 / Chapter 8.2.5 --- Green's function --- p.127 / Chapter 8.3 --- Gravitational Wave excitation by collapsing shell --- p.130 / Chapter 8.4 --- Features of radiation --- p.138 / Chapter 8.4.1 --- Power spectrum --- p.138 / Chapter 8.4.2 --- Wave function --- p.144 / Chapter 8.4.3 --- Energy of excitation --- p.147 / Chapter 8.5 --- Non-adiabatic oscillation --- p.153 / Chapter 8.5.1 --- Mathematical Background --- p.154 / Chapter 8.5.2 --- Numerical results --- p.158 / Chapter 8.6 --- General relativistic simulation --- p.163 / Chapter 8.6.1 --- Technical briefing --- p.163 / Chapter 8.6.2 --- Numerical results --- p.166 / Chapter 8.7 --- Summary --- p.174 / Chapter 9 --- Conclusion and remarks --- p.178 / Chapter A --- Unit conversions --- p.183 / Chapter B --- Series expansion of quark star EOS --- p.185 / Chapter C --- Accuracy of simplified mode extraction scheme --- p.188 / Chapter D --- Computation of moment of inertia --- p.193 / Chapter E --- Comment of exactness of inference scheme --- p.195 / Chapter E.1 --- Precision of the mass inferred --- p.195 / Chapter E.2 --- Accuracy of universality combinations --- p.199 / Chapter F --- Calculation of sound speed --- p.202 / Chapter G --- Mode extraction of non-adiabatic oscillation --- p.204 / Bibliography --- p.208
50

Repetitive Operation of the University of Saskatchewan Compact Torus Injector

Pant, Andre 06 August 2009
Development of fueling technologies for modern and future tokamak reactors is essential for their implementation in a commercial energy production setting. Compared to the presently available fueling technologies, gas or cryogenic pellet injection, compact torus injection presents an effective and efficient method for directly fueling the central core of tokamak plasmas. Fueling of the central core of a tokamak plasma is pivotal for providing efficient energy production. The central core plasma of a reactor contains the greatest density of fusion processes. For consistent and continuous fueling of tokamak fusion reactors, compact torus injectors must be operated in a repetitive mode.<p> The goal of this thesis was to study the feasibility of firing the University of Saskatchewan Compact Torus Injector (USCTI) in a repetitive mode. In order to enable USCTI to fire repetitively, modifications were made to its electrical system, control system and data acquisition system. These consisted primarily of the addition of new power supplies, to enable fast charging of the many capacitor banks used to form and accelerate the plasma. The maximum firing rate achieved on USCTI was 0.33 Hz, an increase from the previous maximum firing rate of 0.2 Hz achieved at UC Davis.<p> Firing USCTI in repetitive modes has been successful. It has been shown that the CTs produced in any given repetitive series are properly formed and repeatable. This is made evident through analysis of data collected from the CTs' magnetic fields and densities as they traveled along the injector barrel. The shots from each experiment were compared to the series' mean data and were shown to be consistent over time. Calculations of their correlations show that there are only minimal deviations from shot to shot in any given series.

Page generated in 0.063 seconds