• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compact ConvNets with Ternary Weights and Binary Activations

Holesovsky, Ondrej January 2017 (has links)
Compact architectures, ternary weights and binary activations are two methods suitable for making neural networks more efficient. We introduce a) a dithering binary activation which improves accuracy of ternary weight networks with binary activations by randomizing quantization error, and b) a method of implementing ternary weight networks with binary activations using binary operations. Despite these new approaches, training a compact SqueezeNet architecture with ternary weights and full precision activations on ImageNet degrades classification accuracy significantly more than when training a less compact architecture the same way. Therefore ternary weights in their current form cannot be called the best method for reducing network size. However, the effect of weight decay on ternary weight network training should be investigated more in order to have more certainty in this finding. / Kompakta arkitekturer, ternära vikter och binära aktiveringar är två metoder som är lämpliga för att göra neurala nätverk effektivare. Vi introducerar a) en dithering binär aktivering som förbättrar noggrannheten av ternärviktsnätverk med binära aktiveringar genom randomisering av kvantiseringsfel, och b) en metod för genomförande ternärviktsnätverk med binära aktiveringar med användning av binära operationer. Trots dessa nya metoder, att träna en kompakt SqueezeNet-arkitektur med ternära vikter och fullprecisionaktiveringar på ImageNet försämrar klassificeringsnoggrannheten betydligt mer än om man tränar en mindre kompakt arkitektur på samma sätt. Därför kan ternära vikter i deras nuvarande form inte kallas bästa sättet att minska nätverksstorleken. Emellertid, effekten av weight decay på träning av ternärviktsnätverk bör undersökas mer för att få större säkerhet i detta resultat.
2

Learning Compact Architectures for Deep Neural Networks

Srinivas, Suraj January 2017 (has links) (PDF)
Deep neural networks with millions of parameters are at the heart of many state of the art computer vision models. However, recent works have shown that models with much smaller number of parameters can often perform just as well. A smaller model has the advantage of being faster to evaluate and easier to store - both of which are crucial for real-time and embedded applications. While prior work on compressing neural networks have looked at methods based on sparsity, quantization and factorization of neural network layers, we look at the alternate approach of pruning neurons. Training Neural Networks is often described as a kind of `black magic', as successful training requires setting the right hyper-parameter values (such as the number of neurons in a layer, depth of the network, etc ). It is often not clear what these values should be, and these decisions often end up being either ad-hoc or driven through extensive experimentation. It would be desirable to automatically set some of these hyper-parameters for the user so as to minimize trial-and-error. Combining this objective with our earlier preference for smaller models, we ask the following question - for a given task, is it possible to come up with small neural network architectures automatically? In this thesis, we propose methods to achieve the same. The work is divided into four parts. First, given a neural network, we look at the problem of identifying important and unimportant neurons. We look at this problem in a data-free setting, i.e; assuming that the data the neural network was trained on, is not available. We propose two rules for identifying wasteful neurons and show that these suffice in such a data-free setting. By removing neurons based on these rules, we are able to reduce model size without significantly affecting accuracy. Second, we propose an automated learning procedure to remove neurons during the process of training. We call this procedure ‘Architecture-Learning’, as this automatically discovers the optimal width and depth of neural networks. We empirically show that this procedure is preferable to trial-and-error based Bayesian Optimization procedures for selecting neural network architectures. Third, we connect ‘Architecture-Learning’ to a popular regularize called ‘Dropout’, and propose a novel regularized which we call ‘Generalized Dropout’. From a Bayesian viewpoint, this method corresponds to a hierarchical extension of the Dropout algorithm. Empirically, we observe that Generalized Dropout corresponds to a more flexible version of Dropout, and works in scenarios where Dropout fails. Finally, we apply our procedure for removing neurons to the problem of removing weights in a neural network, and achieve state-of-the-art results in scarifying neural networks.

Page generated in 0.0871 seconds