• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of Sensitive Equipment Disruptions Due to Voltage Sags

Shen, Cheng-Chieh 12 July 2007 (has links)
Voltage sag (dip), a sudden reduction of the voltage magnitude within a short duration in power system, is one of major concerns of power quality problems. The main reason of the increased concerns for voltage sag problems is that the losses caused by voltage sag events are high and not negligible. Reliability indices have been used for many years to quantify the effect of sustained interruptions on the electric power system. Power quality indices reflecting the severity of various power quality problems, such as flicker, harmonics, voltage swell and sag conditions, power factor, losses, electromagnetic interference, and other phenomena, are still under development. The representation and classification of voltage sags have been studied recently by standard-setting organizations. In order to find compatibility between service quality and the equipment adopted and a least cost solution for possible power quality problems, the concept of system disturbance level and equipment immunity level was proposed in IEC 61000-3-7 but without clear definitions. A novel voltage sag index based on fuzzy logic technique to quantify system disturbance and equipment immunity levels is proposed in this dissertation. This approach takes network vulnerability, equipment sensitivity and uncertainties in measuring voltage sags into account, thereby, providing meaningful information for both the utility and customers. Using the proposed method, the probabilistic distribution of system disturbances can be obtained from the single event indices of all events recorded and the probabilistic distribution of equipment sag immunity capability can be evaluated based on the device voltage sag tolerance curve. This dissertation also presents a novel framework for predicting the number of equipment disruptions due to voltage sags in a unit of time by using the disturbance and immunity levels concepts. In the proposed approach, the number of disruptions is computed by using the unreliability concept. The area of overlapping between the distributions of site disturbance and equipment immunity levels, which indicates the number of possible disruptions, is calculated based on interference theory and reliability computations. The presented methodology can be used as a planning tool to quantify the system disturbances and equipment sensitivity. It can also be used to perform cost analysis of the compatibility of equipment with an electric power system. To minimize the costs due to voltage sags, it is always a good strategy to maintain a minimum overlap between the equipment immunity level and site disturbance level to have satisfactory operation of the equipment. The tool achieved in this work can be used to perform such analyses.
2

Odolnost spotřebičů na krátkodobé poklesy a výpadky napětí / The Appliances Immunity to Short Voltage Dips and Interruptions

Bok, Jaromír January 2011 (has links)
This Ph.D. thesis deals with problems about voltage dips and short voltage interruptions, generally named as voltage events, which origin in power supply networks and have a negative influence for all connected electric appliances. In this thesis single phase appliances are considered. These problems closely relate with area of electromagnetic compatibility which solve all questions about correct operation of different types of electric appliances during electromagnetic disturbances impact. Voltage events are ones of the many types of electromagnetic disturbances. The connection between disturbance sources and sensitive electric appliances is created by power supply lines. The immunity of electric appliances to voltage dips and short interruptions is currently tested via voltage dips with strictly defined parameters which are intended by class of electromagnetic environment in which the usage of electric appliance is recommended. During immunity tests the rectangular shape of voltage dips is preferred. The main descriptive parameters of testing voltage events are the residual voltage and the event time duration. But voltage dips and short interruptions defined by this way do not closely relate with parameters of real voltage dips and interruptions occurred in public supply system where parameters of voltage dips are variable. Moreover in the power supply system there are many of others voltage parameters which can have a significant influence to immunity level of connected electric appliances. This Ph.D. thesis also deals with finding more voltage event parameters. Although the voltage events occurrence in the power supply system is not limited and voltage events are considered only as informative voltage parameter it is important to monitor voltage events occurrence. The monitoring device has to be able to operate for ling time period and it has to detect parameters of voltage events with adequate accuracy. The accuracy of detected event parameters and the detection delay depends on the detection algorithm characteristics. That is why the part of this thesis relates with a comparison of several detection algorithms and their abilities to correct detection of voltage event parameters. The main purpose of this thesis is the proposal of connection between classification of voltage dips and short interruptions occurred in power supply system with the classification of electric appliances immunity to these voltage events. On the base of many of provided electric appliances immunity tests and also on the base of long time period voltage events monitoring the special compatibility levels are proposed in this thesis. The observation of proposed compatibility levels will bring the increasing level of reliable operation of all connected electric appliances.

Page generated in 0.0592 seconds