Spelling suggestions: "subject:"implémentation protéique"" "subject:"l'implémentation protéique""
1 |
Développement d'un essai de complémentation protéique avec la Renilla luciférase et étude de la voie de biosynthèse des acides aminés aromatiques chez Saccharomyces cerevisiaeBerger, Nathalie January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Delineating the interplay between the PB2 protein of influenza A viruses and the host Ubiquitin Proteasome System / Analyse comparative des interactions entre l'ARN polymérase des virus influenza A et le système ubiquitine-protéasome de la cellule hôteBiquand, Elise 31 October 2017 (has links)
On estime que 10%-20% de la population mondiale est infectée chaque année par des virus influenza A (IAV) saisonniers, causant 250 à 500 000 morts. De plus ces virus présentent des risques de pandémie, et sont à ce titre un problème de santé publique majeur. Le cycle viral est dépendant de la capacité du virus à manipuler le protéome cellulaire. Par ailleurs, le système ubiquitine-protéasome (SUP) cellulaire est impliqué dans de nombreux processus de régulation cellulaires par l'induction de la dégradation de protéines, ou par la modification de leur activation ou de leur localisation sub-cellulaire. Le SUP est une cible privilégiée des virus lors de l'infection. Des études récentes indiquent qu'un réseau d'interactions entre les protéines virales des IAV et les protéines du SUP pourrait contribuer à la réplication virale et l’échappement du virus face au système immunitaire. Cependant ces interactions restent encore mal connues. Nous avons construit une banque contenant 570 facteurs du SUP, ce qui représente environ 60% des facteurs SUP humains connus. Puis nous avons mis au point une méthodologie permettant de réaliser un crible comparatif des interactions entre cette banque SUP et cinq PB2 provenant de souches de virus influenza A de virulence différentes chez l’homme : deux souches saisonnières circulant actuellement dans la population humaine (H1N1pdm09 et H3N2), deux souches hautement pathogènes chez l’homme (H7N9 et H1N1-1918) et une souche de laboratoire (H1N1-WSN). Cette première phase de cartographie a permis de sélectionner 42 facteurs du SUP interagissant avec au moins une des protéines PB2 étudiées. Par ailleurs, l’analyse des similarités de profils d’interaction PB2/UPS des souches étudiées a permis de mettre en évidence une corrélation avec le temps de circulation de chaque souche dans la population humaine. Nous avons ensuite caractérisé le rôle fonctionnel des partenaires de PB2 dans le cycle viral par des expériences de déplétion transitoire de l’expression des facteurs cellulaires par siARN, et validé 36 des 42 facteurs testés. La très grande quantité de facteurs identifiés impliqués dans le cycle viral démontre la qualité de la méthodologie développée pour l’identification de ces interacteurs. Parmi ces facteurs, nous avons étudié plus en détail le rôle de trois deubiquitinases (DUBs) dans l’infection. Nous avons montré que les DUBs sont impliquées dans les phases précoces et tardives du cycle viral. De plus, avec des collègues de Hong Kong nous avons mis en évidence que la DUB OTUB1 est impliquée dans la réponse cellulaire à l’infection produisant des cytokines, et probablement dans l’assemblage des nouveaux virions. Nous avons identifié que la DUB OTUD6A est également impliquée dans les phases tardives du cycle viral. A l’inverse PAN2 qui fait partie des complexes de poly-d’adénylation est impliqué dans les phases précoces. Nous poursuivons nos études afin d’élucider le rôle de ces DUBs dans l’infection par IAV. / An estimated 10%-20% of the world's population is affected each year by seasonal epidemic influenza, causing about 250,000 to 500,000 fatal cases. The pandemic risk reinforces the trait of influenza A virus (IAV) infection as a public health issue. The virus life cycle critically relies on its ability to manipulate the host proteome. Besides, the ubiquitin-proteasome system (UPS) is involved in many regulatory processes in mammalian cells by inducing protein degradation, mediating protein activation or shaping their sub-cellular localisation. Therefore, UPS is a prime target hijacked by viruses. Recent evidence indicates that an intricate regulatory network involving viral proteins and the cellular UPS is likely to contribute to viral replication and immune evasion of influenza A viruses. However, usurpation of the host UPS by IAV is far from being comprehensively deciphered. To gain better understanding, we assessed the interplay between the human UPS and the PB2 subunit of the influenza A virus polymerase through a global proteomic profiling approach. For that purpose, an UPS-dedicated library of 590 human cDNAs, comprising 63% of the whole human UPS, was constituted and characterised. In an initial screen, UPS factors were challenged using a high-throughput split luciferase assay for interaction with the PB2 protein from 5 influenza A strains of different pathogenicity in human. A total of 80 UPS factors emerged as potential PB2 partners, of which 42 were validated as high-confidence PB2 partners for at least one of the strains. Further comparison of interaction profiles of the 5 PB2 with the UPS by hierarchical clustering revealed an interaction dendrogram fitting with the circulation time in the human population.Functional importance of interactors was tested by siRNA-mediated knock down experiments using luciferase tagged recombinant IAV viruses. Depletion of 36 out of the 42 tested UPS factors showed an effect on the infection with all or a subset of IAV strains, underlying the strong functional output of the developed methodology. Among these factors three deubiquitinases (DUBs) were further studied to decipher their involvement in IAV viral cycle. We have shown that they are involved in early and late stage of the infection and began to draw their function in viral cycle. We demonstrated with our colleagues in Hong-Kong that OTUB1 is involved in the host cytokine response and most probably in virus assembly. OTUD6A was also shown to be implicated in late stages of the infection but we still don't know its exact role. Contrariwise, the inactive DUB PAN2, which is part of poly-deadenylation complexes, is implicated in early phase of IAV infection, but surprisingly apparently not through viral mRNA regulation. More work is on-going to precise by which mechanisms these DUBs are implicated in IAV infection.
|
Page generated in 0.1653 seconds