1 |
Complete Equitable DecompositionsDrapeau, Joseph Paul 12 December 2022 (has links)
A well-known result in spectral graph theory states that if a graph has an equitable partition then the eigenvalues of the associated divisor graph are a subset of the graph's eigenvalues. A natural question question is whether it is possible to recover the remaining eigenvalues of the graph. Here we show that if a graph has a Hermitian adjacency matrix then the spectrum of the graph can be decomposed into a collection of smaller graphs whose eigenvalues are collectively the remaining eigenvalues of the graph. This we refer to as a complete equitable decomposition of the graph.
|
Page generated in 0.1992 seconds