1 |
Internal Structure and Self-Assembly of Low Dimensional MaterialsMukherjee, Sumanta January 2013 (has links) (PDF)
The properties of bulk 3D materials of metals or semiconductors are manifested with various length scales(e.g., Bohr excitonic radius, magnetic correlation length, mean free path etc.) and are important in controlling their properties. When the size of the material is smaller than these characteristics length scales, the confinement effects operate reflecting changes in their physical behavior. Materials with such confinement effects can be designated as low dimensional materials. There are exceedingly large numbers of low dimensional materials and the last half a century has probably seen the maximum evolution of such materials in terms of synthesis, characterization, understanding and modification of their properties and applications. The field of” nanoscience and nanotechnology”, have become a mature field within the last three decades where, for certain application, synthesis of materials of sizes in the nanometer range can be designed and controlled.
Interface plays a very important role in controlling properties of heterogeneous material of every dimensionality. For example, the interface forms in 2D thin films or interface of heterogeneous nanoparticles(0D). In recent times, a large number of remarkable phenomena have triggered understanding and controlling properties arises due to nature of certain interface. In the field of nanoparticles, it is well known that the photoluminescence property depends very strongly on the nature of interface in heterostructured nanoparticles. In the recent time a large variety of heterostructured nanoparticles starting from core-shell to quantum dot-quantum well kind has been synthesized to increase the photoluminescence efficiency up to 80%. Along with improvement of certain properties due to heterostructure formation inside the nanoparticles, the techniques to understand the nature of those interfaces have improved side by side. It has been recently shown that variable energy X-ray Photoemission Spectroscopy (XPS) can be employed to understand the nature of interfaces (internal structure) of such heterostructure nanoparticles in great detail with high accuracy. While most of the previous studies of variable energy XPS, uses photonenergies sensitive to smaller sized particle, we have extended the idea of such nondestructive approach of understanding the nature of buried interfaces to bigger sized nanoparticles by using photon energy as high as 8000eV, easily available in various 3rd generation synchrotron centers.
The nature of the interface also plays an important role in multilayer thin films. Major components of various electronic devices, like read head memory devices, field effect transistors etc., rely on interface properties of certain multilayer thin film materials. In recent time wide range of unusual phenomenon such as high mobility metallic behavior between two insulating oxide, superconductivity, interface ferroelectricity, unusual magnetism, multiferroicity etc. has been observed at oxide interface making it an interesting field of study. We have shown that variable energy photoemission spectroscopy with high photon energies, can be a useful tool to realize such interfaces and controlling the properties of multilayered devices, as well as to understand the origin of unusual phenomenon exists at several multilayer interfaces.
Chapter1 provides a brief description of low dimensional materials, overall perspective of interesting properties in materials with reduced dimensionality. We have emphasized on the importance of determining the internal structure of buried interface of different dimensionalities. We have given a brief overview and importance of different interfaces that we have studied in the subsequent chapters dealing with specific interfaces. Chapter 2 describes experimental and theoretical methods used for the study of interface and self-assembly reported in this thesis. These methods are divided into two categories. The first section deals with different experimental techniques, like, UV-Visible absorption and photoluminescence spectroscopy, X-Photoelectron Spectroscopy(XPS), X-Ray diffraction, Transmission Electron Microscopy(TEM) etc. This section also includes brief overview on synchrotron radiation and methods used for detail analysis of interface structure using variable energy XPS. In the second part of this chapter, we have discussed theoretical methods used in the present study. \
In Chapter 3A we have combined low energy XPS, useful to extract information of the surface of the nanoparticles, with high energy XPS, important to extract bulk information and have characterized the internal structure of nanoparticle system of different heterogeneity. We have chosen two important heterostructure systems namely, inverted core-shell(CdScore-CdSeshell) type nanoparticles and homogeneous alloy(CdSeS)type nanoparticles. Such internal structure study revealed that the actual internal structure of certain nanomaterial can be widely different from the aim of the synthesis and knowledge of internal structure is a prerequisite in understanding their property. We were able to extend the idea of variable energy XPS to higher energy limit. Many speculations have been made about the probable role of interface in controlling properties, like blinking behavior of bigger sized core-shell nanoparticles, but no conclusive support has yet been given about the nature of such interface. After successfully extending the technique to determine the internal structure of heterostructured nanoparticles to very high photon energy region, we took the opportunity to determine the internal structure of nanoparticles of sizes as large as 12nm with high energy photoemission spectroscopy for the first time.
In Chapter 3B we emphasize on the importance of interface structure in controlling the behavior of bigger sized nanoparticles systems, the unsettled issues regarding their internal structure, and described the usefulness of high energy XPS in elucidating the internal structure of such big particles with grate accuracy to solve such controversies.
The existence of high density storage media relies on the existence of highly sensitive magnetic sensors with large magnetoresistance. Today almost all sensor technologies used in modern hard disk drives rely on tunnel magnetoresistance (TMR)
CoFeB-MgO-CoFeB structures. Though device fabrication is refined to meet satisfactory quality assurance demands, fundamental understanding of the refinement in terms of its effect on the nature of the interfaces and the MgO tunnel barrier leading to improved TMR is still missing. Where, the annealing condition required to improve the TMR ratio is itself not confirmatory its effect on the interface structure is highly debatable. In particular, it has been anticipated that under the proposed exotic conditions highly mobile B will move into the MgO barrier and will form boron oxide. In Chapter 4 we are able to shed definite insights to heart of this problem. We have used high energy photoemission to investigate a series of TMR structures and able to provide a systematic understanding of the driving mechanisms of B diffusion in CoFeBTMR structures. We have solved the mix-up of annealing temperature required and have shown that boron diffusion is limited merely to a sub-nanometer thick layer at the interface and does not progress beyond this point under typical conditions required for device fabrication. We have given a brief overview on the evolution of magnetic storage device and have described various concepts relevant for the study of such systems.
The interface between two nonmagnetic insulators LaAlO3 and SrTiO3 has shown a variety of interface phenomena in the recent times. In spite of a large number of high profile studies on the interface LaAlO3 and SrTiO3 there is still a raging debate on the nature, origin and the distribution of the two dimensional electron gas that is supposed to be responsible for its exotic physical properties, ranging from unusual transport properties to its diverse ground states, such as metallic, magnetic and superconducting ones, depending on the specific synthesis. The polar discontinuity present across the SrTiO3-LaAlO3 interface is expected to result in half an electron transfer from the top of the LaAlO 3 layer to each TiofSrTiO3 at the interface, but, the extent of localization that can make it behave like delocalized with very high mobility as well as localized with magnetic moments is not yet clear. In Chapter 5 we have given a description of this highly interesting system as well as presented the outcome of our depth resolved XPS investigation on several such samples synthesized under different oxygen pressure. We were able to describe successfully the distribution of charge carriers.
While synthesizing and understanding properties of nanoparticles is one issue, using them for device fabrication is another. For example, to make a certain device often requires specific arrangements of nanoparticles in a suitable substrate. Self-assembly formation can be a potential tool in these regards. Just like atom or ions, both nano and colloidal particles also assemble by themselves in ordered or disordered structure under certain conditions, e.g., the drying of a drop of suspension containing the colloid particles over a TEM grid. This phenomenon is known as self-assembly. Though, the process of assembly formation can be a very easy and cost-effective technique to manipulate the properties in the nano region, than the existing ones like lithography but, the lack of systematic study and poor understanding of these phenomena at microscopic level has led to a situation that, there is no precise information available in literature to say about the nature of such assembly.
In Chapter 6 we have described experiments that eliminate the dependence of the self-assembly process on many complicating factors like substrate-particle interaction, substrate-solvent interaction etc., making the process of ordering governed by minimum numbers of experimental parameter that can be easily controlled. Under simplified conditions, our experiments unveil an interesting competition between ordering and jamming in drying colloid systems similar to glass transition phenomenon
Resulting in the typical phase behavior of the particles. We establish a re-entrant behavior in the order-disorder phase diagram as a function of particle density such that there is an optimal range of particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.
In summary, we were able to extend the idea of variable energy XPS to higher energy limit advantageous for investigating internal structure of nonmaterial of various dimensionalities and sizes. We were able to comprehend nature of buried interface indicating properties of heterostructures quantum dots and thin films. Our study revealed that depth resolved XPS combined with accessibility of high and variable energies at synchrotron centers can be a very general and effective tool for understanding buried interface. Finally, we have given insight to the mechanism of spontaneous ordering of nanoparticles over a suitable substrate.
|
Page generated in 0.0683 seconds