• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lump, complexiton and algebro-geometric solutions to soliton equations

Zhou, Yuan 28 June 2017 (has links)
In chapter 2, we study two Kaup-Newell-type matrix spectral problems, derive their soliton hierarchies within the zero curvature formulation, and furnish their bi-Hamiltonian structures by the trace identity to show that they are integrable in the Liouville sense. In chapter 5, we obtain the Riemann theta function representation of solutions for the first hierarchy of generalized Kaup-Newell systems. In chapter 3, using Hirota bilinear forms, we discuss positive quadratic polynomial solutions to generalized bilinear equations, which generate lump or lump-type solutions to nonlinear evolution equations, and propose an algorithm for computing higher-order lump or lump-type solutions. In chapter 4, we study mixed exponential and trigonometric wave solutions (called complexitons) to general bilinear equations, and propose two methods to find complexitons to generalized bilinear equations. We also succeed in proving that by choosing suitable complex coefficients in soliton solutions, multi-complexitons are actually real wave solutions from complex soliton solutions and establish the linear superposition principle for complexion solutions. In each chapter, we present computational examples.

Page generated in 0.0483 seconds