1 |
Bio-inspired Multifunctional Coatings and Composite InterphasesDeng, Yinhu 08 November 2016 (has links) (PDF)
Graphene nanoplatelets have been introduced into the interphase between electrically insulating glass fibre and polymer matrix to functionalize the traditional composite. Owing to the distribution of network structure of GNPs, the interphase can transfer the signals about various internal change of material. Consequently, due to the novel bio-inspired overlapping structure, our GNPs-glass fibre shows a unique opportunity as a micro-scale multifunctional sensor.
The following conclusions can be drawn from present research:
• We prepared GNPs solution via a scalable and highly effective liquid-phase exfoliation method. This method produces high-quality, unoxidized graphene flakes from flake graphite. We control the thickness and size of GNPs by varying the centrifugation rate.
• A simple fibre oriented capillary flow which can suppress ‘coffee ring’ effect to deposit GNPs onto the curved glass fibre surface. The GNPs form continuous fish scales like overlapping structure.
• The electrical conductivity of our GNPs-glass fibre shows semiconductive property. The electrical resistance value scattering and the advancing contact angle value scattering indicate a uniform deposit structure. The uniform overlapping structure is a key factor for higher electrical conductivity compared with our previous work with CNTs.
• The contact angles of our GNPs-glass fibre with water indicate that the GNPs are almost unoxidized, so the inert GNPs coating decreases the interfacial shears strength.
• A micro scale GNPs-glass fibre sensor for gas sensing is achieved by deposit GNPs onto glass fibre surface. This sensor can be used to detect solvents vapours, such as water, ethanol and acetone. All these vapours work as electron acceptor when reacting with GNPs. The acetone shows the highest sensitivity (45000%) compared with water and ethanol.
• The doping-dedoping of GNPs-glass fibres during adsorption-desorption cycles of acetone result in the efficient “break-junction” (GNPs lost electron carrier concentration) mechanism, which provides the possibility to fabricate the electrochemical “switch” in a simple and unique way.
• The resistance of our GNPs-glass fibre shows exponential relationship with RH. This is attributed to two points. Firstly, the water vapours show similar exponential adsorption on carbon surface; secondly, the bandgap of GNPs increases with the increase of adsorbed water vapour concentration.
• Due to the weak van der Waals interaction when water molecules are adsorbed on GNPs surface, our GNPs-glass fibre shows extreme fast response and recovery time with RH. It is potential for our GNPs-glass fibre being used to monitor the breath frequency.
• Utilizing the negative temperature coefficient of GNPs, our GNPs-glass fibre can be used as temperature sensor with a sensing region of -150 to 30 °C.
• Through the observed abnormal resistance change at a temperature of about – 18 °C, we discovered a phase change of the trance confined water in graphene layers. Based on the resistance change, we can study the interaction of water and carbon nanoparticles.
• The bio-inspired novel overlapped multilayer structure of GNPs coating shows structural colours. Even more, our GNPs-glass fibre can be used to monitor the loading force in the interphase when it is embedded into epoxy resin.
• Our GNPs-glass fibre shows an excellent piezoresistive property, the single GNPs-glass fibre shows a larger gauge factor than the commercial strains sensor.
• The semiconductive interphase was formed when the GNPs-glass fibre was embedded in polymer matrix. This semiconductive interphase is very sensitive to the deformation of material, therefore, an in-situ strain sensor was manufactured to real-time monitor the microcracks in a composite instead of external sensors. The area of resistance ‘jump’ increase can be seen as the feature area for damage’s early warning.
• Monitoring the resistance variation of the single fibre composite was conducted under cyclic loading with progressively increasing the strain peaks in order to further investigate the response of in-situ sensor to the interphase damage process. The deviation of resistance/strain when the stress is larger than 2 % highlights the accumulation of damage, which gives insight into the mechanism of resistance change.
|
2 |
Bio-inspired Multifunctional Coatings and Composite InterphasesDeng, Yinhu 19 October 2016 (has links)
Graphene nanoplatelets have been introduced into the interphase between electrically insulating glass fibre and polymer matrix to functionalize the traditional composite. Owing to the distribution of network structure of GNPs, the interphase can transfer the signals about various internal change of material. Consequently, due to the novel bio-inspired overlapping structure, our GNPs-glass fibre shows a unique opportunity as a micro-scale multifunctional sensor.
The following conclusions can be drawn from present research:
• We prepared GNPs solution via a scalable and highly effective liquid-phase exfoliation method. This method produces high-quality, unoxidized graphene flakes from flake graphite. We control the thickness and size of GNPs by varying the centrifugation rate.
• A simple fibre oriented capillary flow which can suppress ‘coffee ring’ effect to deposit GNPs onto the curved glass fibre surface. The GNPs form continuous fish scales like overlapping structure.
• The electrical conductivity of our GNPs-glass fibre shows semiconductive property. The electrical resistance value scattering and the advancing contact angle value scattering indicate a uniform deposit structure. The uniform overlapping structure is a key factor for higher electrical conductivity compared with our previous work with CNTs.
• The contact angles of our GNPs-glass fibre with water indicate that the GNPs are almost unoxidized, so the inert GNPs coating decreases the interfacial shears strength.
• A micro scale GNPs-glass fibre sensor for gas sensing is achieved by deposit GNPs onto glass fibre surface. This sensor can be used to detect solvents vapours, such as water, ethanol and acetone. All these vapours work as electron acceptor when reacting with GNPs. The acetone shows the highest sensitivity (45000%) compared with water and ethanol.
• The doping-dedoping of GNPs-glass fibres during adsorption-desorption cycles of acetone result in the efficient “break-junction” (GNPs lost electron carrier concentration) mechanism, which provides the possibility to fabricate the electrochemical “switch” in a simple and unique way.
• The resistance of our GNPs-glass fibre shows exponential relationship with RH. This is attributed to two points. Firstly, the water vapours show similar exponential adsorption on carbon surface; secondly, the bandgap of GNPs increases with the increase of adsorbed water vapour concentration.
• Due to the weak van der Waals interaction when water molecules are adsorbed on GNPs surface, our GNPs-glass fibre shows extreme fast response and recovery time with RH. It is potential for our GNPs-glass fibre being used to monitor the breath frequency.
• Utilizing the negative temperature coefficient of GNPs, our GNPs-glass fibre can be used as temperature sensor with a sensing region of -150 to 30 °C.
• Through the observed abnormal resistance change at a temperature of about – 18 °C, we discovered a phase change of the trance confined water in graphene layers. Based on the resistance change, we can study the interaction of water and carbon nanoparticles.
• The bio-inspired novel overlapped multilayer structure of GNPs coating shows structural colours. Even more, our GNPs-glass fibre can be used to monitor the loading force in the interphase when it is embedded into epoxy resin.
• Our GNPs-glass fibre shows an excellent piezoresistive property, the single GNPs-glass fibre shows a larger gauge factor than the commercial strains sensor.
• The semiconductive interphase was formed when the GNPs-glass fibre was embedded in polymer matrix. This semiconductive interphase is very sensitive to the deformation of material, therefore, an in-situ strain sensor was manufactured to real-time monitor the microcracks in a composite instead of external sensors. The area of resistance ‘jump’ increase can be seen as the feature area for damage’s early warning.
• Monitoring the resistance variation of the single fibre composite was conducted under cyclic loading with progressively increasing the strain peaks in order to further investigate the response of in-situ sensor to the interphase damage process. The deviation of resistance/strain when the stress is larger than 2 % highlights the accumulation of damage, which gives insight into the mechanism of resistance change.
|
3 |
The Effect of Chemistry and Network Structure on Morphological and Mechanical Properties of Diepoxide Precursors and Poly(Hydroxyethers)Bump, Maggie Bobbitt 27 April 2001 (has links)
This dissertation research addresses the interrelationships between chemistry and network structure in epoxy networks as well as how mechanical properties of the resulting networks are affected by these relationships. The effects of chemistry and network structure on interphase morphology and performance in vinyl ester/carbon fiber composites have also been investigated on both a macro and nanoscale.
Thermosets were prepared with blends of bisphenol-A and novel phosphine oxide based diepoxide oligomers using a siloxane or a novolac crosslinking agent. In the siloxane cured networks the incorporation of the phosphine oxide group yielded networks with increased glass transition temperatures, from 71°C to 92°C, and water absorption, from 1 wt % to 5.5 wt %, due to the polar nature of the phosphine oxide bond. Higher char yields were also observed with the addition of the phosphorus, 27 wt % compared to 11 wt % for bisphenol-A epoxy networks. The bisphenol-A based epoxy/siloxane network was exceptionally ductile with a fracture toughness (K1c) of 2 MPa-m1/2. In networks prepared with the novolac crosslinking agent hydrogen bonding, observed using FTIR, was evident even at temperatures above the network Tg and resulted in increased rubbery moduli with phosphine oxide incorporation. Adhesive strengths to steel increased from ~9.7 MPa with bisphenol-A epoxy to ~13.8 MPa when the phosphine oxide containing epoxy was incorporated into the network.
Within carbon fiber/vinyl ester composites, a series of tough ductile thermoplastics and a series of one-phase polyurethanes were investigated as carbon fiber sizings. The three poly(hydroxyether)s resulted in different interphase morphologies due to their respective interdiffusion into the vinyl ester resin. The unmodified poly(hydroxyether) was miscible with the vinyl ester resin at the elevated cure temperatures and adhesion between the fiber and bulk matrix was increased from 28 MPa with unsized fibers to 45 MPa with sized fibers. The carboxylate modified poly(hydroxyether) was also miscible at elevated temperatures, however the interdiffused region was narrower, ~5 mm. This system showed an increase in the fiber/matrix adhesion similar to that found for the unmodified poly(hydroxyether)/vinyl ester system and composite cyclic fatigue durability was improved by ~50 %. Using a poly(hydroxyether ethanolamine) interphase material, which was not miscible with the resin, resulted in a sharp interface. While the adhesion was not improved through the use of this sizing, the composite fatigue durability was still increased by a moderate amount, ~ 25%. The one-phase polyurethanes were dispersible in water with incorporation of a minimum of 0.08 equivalents of N-methyldiethanolamine per mole of diisocyanate. Fatigue durability in composite panels was not improved by the addition of the polyurethane sizings due to the miscibility of the sizing and the matrix. / Ph. D.
|
Page generated in 0.1161 seconds