• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Laboratory Examination of Down-slope Bentonite Erosion in Geosynthetic Clay Liners

Ashe, Lauren 01 May 2014 (has links)
Geosynthetic Clay Liners (GCLs) are commonly paired with a geomembrane and used as part of a composite liner system for landfill barriers. Under some circumstances, leaving a composite geomembrane/geosynthetic clay liner exposed to solar radiation in the field has been shown to cause shrinkage of the underlying GCL. Recent field studies have shown that leaving a composite liner exposed can also lead to down-slope erosion of bentonite from the GCL due to the down-slope movement of moisture. To investigate the factors that can affect the onset of bentonite erosion in a GCL an experimental technique was developed to reproduce similar erosion in the laboratory. The test method simulates the features that occur with the erosion of bentonite caused by down-slope migration of evaporative water in the field. One needle-punched GCL was tested to examine the factors that can affect the onset of erosion of bentonite particles with the flow of water. The factors examined include the effect of the initial wet/dry cycle, water source chemistry, flow rate, slope, prior cation exchange, and the effect of no drying phase in the test cycle. Ten different manufactured GCL products were tested to examine the effect of material properties on the erosion of bentonite from a GCL. The material properties of the products tested differed in terms of the type of carrier and cover geotextiles, bentonite (powdered, fine and coarse grained, and some with a polymer enhancement additive) and the presence of a polypropylene coating over the geotextile. It was found that the most critical factor to trigger the onset of bentonite erosion was the water source chemistry, with the tests that simulated the evaporation and condensation of water (deionized water) below an exposed composite liner leading to the formation of major erosion features. The results of the laboratory testing program also show that erosion features are more visible in products with white coloured geotextiles. The products containing a polypropylene coated geotextile and polymer enhanced bentonite slowed or, in some cases, prevented erosion features from developing. / Thesis (Master, Civil Engineering) -- Queen's University, 2014-05-01 10:16:14.05
2

Landfill Site Selection And Landfill Liner Design For Ankara

Yal, Gozde P 01 May 2010 (has links) (PDF)
The main scope of this thesis is to select alternative landfill sites for Ankara based on the growing trends of Ankara towards the Sincan and G&ouml / lbaSi municipalities and to eventually select the best alternative. Landfill site selection was carried out utilizing Geographic Information System (GIS) and Multi-Criteria-Decision-Analysis (MCDA). A number of criteria were gathered in a GIS environment. Each criterion was assigned a weight value by applying the Pairwise Comparison Method (PCM). &ldquo / The Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS)&rdquo / , was applied and the best landfill site alternative was determined. The geotechnical properties of the clay samples, obtained from selected locations in G&ouml / lbaSi and Sincan were determined in order to design a landfill liner system using compacted &ldquo / Ankara Clay&rdquo / as the liner material. The permeability values for the clay samples were determined by performing falling head tests and consolidation tests. The coefficient of permeability value of the compacted clay was determined to be in the order of 10-10 m/s for the G&ouml / lbaSi samples and 10-11 m/s for the Sincan samples for both of the tests performed. These tests indicated that the native clay was suitable to be utilized as a landfill liner material. The HELP and POLLUTE was employed for the purpose of landfill design and predicting the landfill hydrological processes. The landfill profile with a double lining system composed of geomembrane/compacted clay composite top and bottom liners with a drainage layer was determined to show the best performance amongst the others.

Page generated in 0.0816 seconds