• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of process parameters on the properties of resin transfer molded composites

Demaree, Robert John 18 November 2008 (has links)
A series of composite panels were fabricated by resin transfer molding (RTM), varying materials and process conditions. Reinforcements used included a fiberglass woven material, and AS-4 carbon in both sized and unsized plain weave fabrics. Vinyl ester, epoxy, and cyanate ester resins were pressure injected into these fabrics. The epoxy panels were processed with varying injection temperatures and pressures. A density-based technique was used to measure the fiber volume fraction and void content of the composite panels. Optical photomicrographs were used to verify the accuracy of the void calculations. Mechanical tests included compression strength, inplane and interlaminar shear strengths, and impact. Compression after impact tests were performed and compared to undamaged compression strengths. The compression, inplane shear, and interlaminar shear strengths of the epoxy composites were higher than the vinyl ester composites. Similarly, cyanate ester systems with similar reinforcements outperformed the epoxy composites in these tests. In impact testing, the graphite fabric/ epoxy resin composite retained the lowest portion of original strength after impact. The cyante esters retained the most strength, but vinyl ester composites suffered less damage. Vinyl ester composites made with unsized carbon fibers performed better in interlaminar shear, and in impact tests, than those with sized fibers. The variation of injection temperature had little effect on either void content or strength of the epoxy composites. Increases in injection pressure did produce a higher void content in epoxy laminates, but no significant change in strength was observed. / Master of Science
2

Optimal Design and Analysis of Bio-inspired, Curvilinearly Stiffened Composite Flexible Wings

Zhao, Wei 19 September 2017 (has links)
Large-aspect-ratio wings and composite structures both have been considered for the next-generation civil transport aircraft to achieve improved aerodynamic efficiency and to save aircraft structural weight. The use of the large-aspect-ratio and the light-weight composite wing can lead to an enhanced flexibility of the aircraft wing, which may cause many aeroelastic problems such as large deflections, increased drag, onset of flutter, loss of control authority, etc. Aeroelastic tailoring, internal structural layout design and aerodynamic wing shape morphing are all considered to address these aeroelastic problems through multidisciplinary design, analysis and optimization (MDAO) studies in this work. Performance Adaptive Aeroelastic Wing (PAAW) program was initiated by NASA to leverage the flexibility associated with the use of the large-aspect-ratio wings and light-weight composite structures in a beneficial way for civil transport aircraft wing design. The biologically inspired SpaRibs concept is used for aircraft wing box internal structural layout design to achieve the optimal stiffness distribution to improve the aircraft performance. Along with the use of the active aeroelastic wing concept through morphing wing shape including the wing jig-shape, the control surface rotations and the aeroelastic tailoring scheme using composite laminates with ply-drop for wing skin design, a MDAO framework, which has the capabilities in total structural weight minimization, total drag minimization during cruise, ground roll distance minimization in takeoff and load alleviation in various maneuver loads by morphing its shape, is developed for designing models used in the PAAW program. A bilevel programming (BLP) multidisciplinary design optimization (MDO) architecture is developed for the MDAO framework. The upper-level optimization problem entails minimization of weight, drag and ground roll distance, all subjected to both static constraints and the global dynamic requirements including flutter mode and free vibration modes due to the specified control law design for body freedom flutter suppression and static margin constraint. The lower-level optimization is conducted to minimize the total drag by morphing wing shape, to minimize wing root bending moment by scheduling flap rotations (a surrogate for weight reduction), and to minimize the takeoff ground roll distance. Particle swarm optimization and gradient-based optimization are used, respectively, in the upper-level and the lower-level optimization problems. Optimization results show that the wing box with SpaRibs can further improve the aircraft performances, especially in a large weight saving, as compared to the wing with traditional spars and ribs. Additionally, the nonuniform chord control surface associated with the wing with SpaRibs achieve further reductions in structural weight, total drag and takeoff ground roll distance for an improved aircraft performance. For a further improvement of the global wing skin panel design, an efficient finite element approach is developed in designing stiffened composite panels with arbitrarily shaped stiffeners for buckling and vibration analyses. The developed approach allows the finite element nodes for the stiffeners and panels not to coincide at the panel-stiffeners interfaces. The stiffness, mass and geometric stiffness matrices for the stiffeners can be transformed to those for the panel through the displacement compatibility at their interfaces. The method improves the feasible model used in shape optimizing by avoiding repeated meshing for stiffened plate. Also, it reduces the order of the finite element model, a fine mesh typically associated with the skin panel stiffened by many stiffeners, for an efficient structural analysis. Several benchmark cases have been studied to verify the accuracy of the developed approach for stiffened composite panel structural analyses. Several parametric studies are conducted to show the influence of stiffener shape/placement/depth-ratio on panel's buckling and vibration responses. The developed approach shows a potential benefit of using gradient-based optimization for stiffener shape design. / Ph. D.
3

Mechanical And Physical Properties Of Preservative-Treated Strandboard

Kirkpatrick, John Warren 10 December 2005 (has links)
The purpose of this research was to quantify properties of strandboard panels manufactured with various preservatives at loading levels effective against native termites. Panels were manufactured using nine different formulations. The method of preservative addition was also examined for some preservative formulations, increasing the total number of preservative treatments to twelve. Panels were manufactured with one target retention for each preservative treatment. An effective preservative loading relative to termites was established by previous studies or referencing current standards. Mechanical testing performed included static bending and internal bond. Physical testing included water absorption, thickness swell, and linear expansion. Few treatments met the Canadian standards for strandboard, but several preservatives performed well. Copper naphthenate, bifenthrin, and copper betaine each deserve further investigation to optimize manufacturing variables to meet required mechanical and physical properties.
4

Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

Jrad, Mohamed 13 May 2015 (has links)
The structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. The design concept of reinforcing the wing structure using curvilinear stiffening members has been explored due to the development of novel manufacturing technologies like electron-beam-free-form-fabrication (EBF3). For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. The panel thickness, size and shape of stiffeners are optimized to minimize the structural weight. The geometry of spars and ribs greatly influences the design of stiffened panels. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". The aircraft design is characterized by multiple disciplines: structures, aeroelasticity and buckling. Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. The interaction between the global wing optimization and the local panel optimization is usually computationally expensive. A parallel computing technology has been developed in Python programming to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. Both the global wing design variables and local panel design variables are optimized to minimize the wing weight at an acceptable computational cost. The structural weight of the wing has been, therefore, reduced by 40% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. In the presence of structural discontinuities like cracks, delaminations, cutouts etc., the computational complexity increases significantly. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We investigate here the performance of the global-local scheme based on the finite element method by comparing it to the traditional finite element method. To do so, we conduct a 2D structural analysis of a composite square plate, with a thin rectangular notch at its center, subjected to a uniform transverse pressure, using the commercial software ABAQUS. We show that the presence of the thin notch affects only the local response of the structure and that the size of the affected area depends on the notch length. We investigate also the effect of the notch shape on the response of the structure. Stiffeners attached to composite panels may significantly increase the overall buckling load of the resultant stiffened structure. Buckling analysis of a composite panel with attached longitudinal stiffeners under compressive loads is performed using Ritz method with trigonometric functions. Results are then compared to those from ABAQUS FEA for different shell elements. The case of composite panel with one, two, and three stiffeners is investigated. The effect of the distance between the stiffeners on the buckling load is also studied. The variation of the buckling load and buckling modes with the stiffeners' height is investigated. It is shown that there is an optimum value of stiffeners' height beyond which the structural response of the stiffened panel is not improved and the buckling load does not increase. Furthermore, there exist different critical values of stiffener's height at which the buckling mode of the structure changes. Next, buckling analysis of a composite panel with two straight stiffeners and a crack at the center is performed. Finally, buckling analysis of a composite panel with curvilinear stiffeners and a crack at the center is also conducted. ABAQUS is used for these two examples and results show that panels with a larger crack have a reduced buckling load. It is shown also that the buckling load decreases slightly when using higher order 2D shell FEM elements. A damage tolerance framework, EBF3PanelOpt, has been developed to design and analyze curvilinearly stiffened panels. The framework is written with the scripting language PYTHON and it interacts with the commercial software MSC. Patran (for geometry and mesh creation), MSC. Nastran (for finite element analysis), and MSC. Marc (for damage tolerance analysis). The crack location is set to the location of the maximum value of the major principal stress while its orientation is set normal to the major principal axis direction. The effective stress intensity factor is calculated using the Virtual Crack Closure Technique and compared to the fracture toughness of the material in order to decide whether the crack will expand or not. The ratio of these two quantities is used as a constraint, along with the buckling factor, Kreisselmeier and Steinhauser criteria, and crippling factor. The EBF3PanelOpt framework is integrated within a two-step Particle Swarm Optimization in order to minimize the weight of the panel while satisfying the aforementioned constraints and using all the shape and thickness parameters as design variables. The result of the PSO is used then as an initial guess for the Gradient Based Optimization using only the thickness parameters as design variables. The GBO is applied using the commercial software VisualDOC. / Ph. D.

Page generated in 0.0444 seconds